scispace - formally typeset
Search or ask a question
Topic

Pyruvate dehydrogenase kinase

About: Pyruvate dehydrogenase kinase is a research topic. Over the lifetime, 4224 publications have been published within this topic receiving 161052 citations. The topic is also known as: [pyruvate dehydrogenase (lipoamide)] kinase & pyruvate dehydrogenase (lipoamide) kinase.


Papers
More filters
Journal ArticleDOI
28 Mar 2013-Oncogene
TL;DR: This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1α activation in solid tumors.
Abstract: Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the 'pseudohypoxic' mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H(2)O(2), as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1α activation in solid tumors.

170 citations

Journal ArticleDOI
TL;DR: The gene encoding D-lactate dehydrogenase of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter, suggesting that the new family consists of D-isomer-stereospecific enzymes.

170 citations

Journal ArticleDOI
TL;DR: The dihydro form of flavodoxin was characterized as the particular species involved in the activation of pyruvate formate-lyase, which occurs with 70% of maximal efficiency when the ratio [NADPH]/([NADP] + [NadPH]) is fixed at the intracellular 'anabolic reduction charge' value of 0.45.
Abstract: Flavodoxin and ferredoxin become reduced in Escherichia coli cells by oxidoreductase reactions which use pyruvate and NADPH as electron donor substrates. The two enzymes, which are minor proteins of this organism, were measured through the reduced flavodoxin-dependent activation of pyruvate formate-lyase. The NADPH-dependent enzyme, obtained homogeneously through Procion-red affinity chromatography, was identified as the flavoprotein 'component R' described previously by Fujii and Huennekens [J. Biol. Chem. 249, 6745-6753 (1974)]. The pyruvate-dependent enzyme was identified as CoA-acetylating pyruvate:flavodoxin (ferredoxin) oxidoreductase. Its catalytic properties in the forward, reverse, and the 14CO2-pyruvate exchange reaction are reported. The dihydro form of flavodoxin was characterized as the particular species involved in the activation of pyruvate formate-lyase. The activation process still occurs with 70% of maximal efficiency when the ratio [NADPH]/([NADP] + [NADPH]) is fixed at the intracellular 'anabolic reduction charge' value of 0.45, in conjunction with the NADPH-dependent enzyme. The [2Fe-2S] ferredoxin, though being readily used as electron acceptor of both oxidoreductases and having a redox potential similar to flavodoxin, proved incompetent in mediating the activation of pyruvate formate-lyase.

170 citations

Journal ArticleDOI
TL;DR: Results suggest that pyruvate protects neuronal cells through its antioxidant actions on mitochondria, and suppressed superoxide production by submitochondrial particles, and attenuated oxidative stress-induced collapse of the mitochondrial membrane potential.

169 citations

Journal ArticleDOI
TL;DR: An important role for MPC2 is demonstrated in controlling hepatic gluconeogenesis and a compensatory mechanism for circumventing a block in mitochondrial pyruvate import is illuminated.

169 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
84% related
Intracellular
41.4K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202234
202161
202063
201959
201851