scispace - formally typeset
Search or ask a question
Topic

Pyruvate dehydrogenase kinase

About: Pyruvate dehydrogenase kinase is a research topic. Over the lifetime, 4224 publications have been published within this topic receiving 161052 citations. The topic is also known as: [pyruvate dehydrogenase (lipoamide)] kinase & pyruvate dehydrogenase (lipoamide) kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: PDK2, PDK3 and PDK4 are primary PPARbeta/delta target genes in humans underlining the importance of the receptor in the control of metabolism.

90 citations

Journal ArticleDOI
TL;DR: Pyruvate recycling was demonstrated in astrocytes, indicating the ability of these cells to undertake complete oxidative degradation of glutamate, and mitochondrial malic enzyme is not operational, indicating that pyruvates are not up-regulated in the neuronal-astrocytic co-cultures.
Abstract: Pyruvate recycling was studied in primary cultures of mouse cerebrocortical astrocytes, GABAergic cerebrocortical interneurons, and co-cultures consisting of both cell types by measuring production of [4-(13)C]glutamate from [3-(13)C]glutamate by aid of nuclear magnetic resonance spectroscopy. This change in the position of the label can only occur by entry of [3-(13)C]glutamate into the tricarboxylic acid (TCA) cycle, conversion of labeled alpha-ketoglutarate to malate or oxaloacetate, malic enzyme-mediated decarboxylation of malate to pyruvate or phosphoenolpyruvate carboxykinase-mediated conversion of oxaloacetate to phosphoenolpyruvate and subsequent hydrolysis of the latter to pyruvate, and introduction of the labeled pyruvate into the TCA cycle, i.e., after exit of the carbon skeleton of pyruvate from the TCA cycle followed by re-entry of the same pyruvate molecules via acetyl CoA. In agreement with earlier observations, pyruvate recycling was demonstrated in astrocytes, indicating the ability of these cells to undertake complete oxidative degradation of glutamate. The recycled [4-(13)C]glutamate was not further converted to glutamine, showing compartmentation of astrocytic metabolism. Thus, absence of recycling into glutamine in the brain in vivo cannot be taken as indication that pyruvate recycling is absent in astrocytes. No recycling could be demonstrated in the cerebrocortical neurons. This is consistent with a previously demonstrated lack of incorporation of label from glutamate into lactate, and it also indicates that mitochondrial malic enzyme is not operational. Nor was there any indication of pyruvate recycling in the co-cultures. Although this may partly be due to more rapid depletion of glutamate in the co-cultures, this observation at the very least indicates that pyruvate recycling is not up-regulated in the neuronal-astrocytic co-cultures.

89 citations

Journal ArticleDOI
TL;DR: It is demonstrated that cardiac-specific overexpression of PDK4 is sufficient to cause a loss of metabolic flexibility that exacerbates cardiomyopathy caused by the calcineurin stress-activated pathway.
Abstract: The heart adapts to changes in nutritional status and energy demands by adjusting its relative metabolism of carbohydrates and fatty acids. Loss of this metabolic flexibility such as occurs in diabetes mellitus is associated with cardiovascular disease and heart failure. To study the long-term consequences of impaired metabolic flexibility, we have generated mice that overexpress pyruvate dehydrogenase kinase (PDK)4 selectively in the heart. Hearts from PDK4 transgenic mice have a marked decrease in glucose oxidation and a corresponding increase in fatty acid catabolism. Although no overt cardiomyopathy was observed in the PDK4 transgenic mice, introduction of the PDK4 transgene into mice expressing a constitutively active form of the phosphatase calcineurin, which causes cardiac hypertrophy, caused cardiomyocyte fibrosis and a striking increase in mortality. These results demonstrate that cardiac-specific overexpression of PDK4 is sufficient to cause a loss of metabolic flexibility that exacerbates cardiomyopathy caused by the calcineurin stress-activated pathway.

89 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
84% related
Intracellular
41.4K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202234
202161
202063
201959
201851