scispace - formally typeset
Search or ask a question
Topic

Pyruvate kinase

About: Pyruvate kinase is a research topic. Over the lifetime, 5683 publications have been published within this topic receiving 180020 citations. The topic is also known as: ATP:pyruvate 2-O-phosphotransferase & phosphoenolpyruvate kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: Mammalian pyruvate kinase (PK), a key glycolytic enzyme, has two genes named PKL and PKM, which produce the L- and R-type isoenzymes by means of alternative promoters, and the M1-and M2-types by mutually exclusive alternative splicing respectively.
Abstract: Mammalian pyruvate kinase (PK), a key glycolytic enzyme, has two genes named PKL and PKM, which produce the L- and R-type isoenzymes by means of alternative promoters, and the M1-and M2-types by mutually exclusive alternative splicing respectively. The expression of these genes is tissue-specific and under developmental, dietary and hormonal control. The L-type isoenzyme (L-PK) gene contains multiple regulatory elements necessary for regulation in the 5' flanking region, up to position -170. Both L-II and L-III elements are required for stimulation of L-PK gene transcription by carbohydrates such as glucose and fructose, although the L-III element is itself responsive to carbohydrates. The L-II element is also responsible for the gene regulation by polyunsaturated fatty acids. Nuclear factor-1 proteins and hepatocyte nuclear factor 4, which bind to the L-II element, may also be involved in carbohydrate and polyunsaturated fatty acid regulation of the L-PK gene respectively. However, the L-III-element-binding protein that is involved in carbohydrate regulation remains to be clarified, although involvement by an upstream stimulating factor has been proposed. Available evidence suggests that the carbohydrate signalling pathway to the L-PK gene includes a glucose metabolite, possibly glucose 6-phosphate or xylulose 5-phosphate, as well as phosphorylation and dephosphorylation mechanisms. In addition, at least five regulatory elements have been identified in the 5' flanking region of the PKM gene up to position -279. Sp1-family proteins bind to two proximal elements, but the binding of proteins to other elements have not yet been clarified. Glucose may stimulate the transcription of the PKM gene via hexosamine derivatives. Sp1 may be involved in this regulation via its dephosphorylation, although the carbohydrate response element has not been determined precisely in the PKM gene. Thus glucose stimulates transcription of the PKM gene by the mechanism which is probably different from the L-PK gene.

189 citations

Journal ArticleDOI
TL;DR: A simple device for “dark” injection of firefly lantern extract into solutions is described, and the intensity of the initial light flash of the luciferin-luciferase reaction was found to be proportional to the concentration of ATP and of ADP, after conversion to ATP with the pyruvate-kinase system.

188 citations

Journal ArticleDOI
TL;DR: Observations can be explained by a phosphorylation of pyruvate kinase by cyclic-AMP-dependent protein kinase, as described by Ljungström et al, which offers a molecular explanation for the hormonal control of gluconeogenesis.
Abstract: Treatment of isolated rat hepatocytes with saturating concentrations of glucagon caused several modifications properties of pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40): S0.5 (substrate concentration at half maximum velocity) for phosphoenolpyruvate was about doubled, whereas Vmax was not changed; the activity measured at 0.15 mM phosphoenolpyruvate (physiological concentration) was reduced 65-80%; and there was also an increase in the Hill coefficient and in the affinity of the enzyme for the inhibitors Mg-ATP and alanine. Glucagon, 3':5'-cyclic AMP, and epinephrine caused an inactivation of pyruvate kinase together with a sitmulation of gluconeogenesis. Insulin (10 nM) antagonized the effect of suboptimal doses of glucagon or cyclic AMP and of even maximal doses of epinephrine, on both pyruvate kinase activity and on gluconeogenesis. These observations can be explained by a phosphorylation of pyruvate kinase by cyclic-AMP-dependent protein kinase, as described by Ljungstrom et al. [(1974) Biochim. Biophys. Acta 358, 289-298] in a reconstructed system. They offer a molecular explanation for the hormonal control of gluconeogenesis. Glucose caused an inhibition of gluconeogenesis with no corresponding change in pyruvate kinase activity.

187 citations

Journal ArticleDOI
TL;DR: The results of a current and extensive review that determines the sites of conservation and/or difference in PK sequences, and the differences in the functional and regulatory properties of the enzymes are described.
Abstract: Pyruvate kinase (PK) is a key enzyme for the glycolytic pathway and carbon metabolism in general. On the basis of the relevance and enormous diverse properties of this enzyme, this paper describes the results of a current and extensive review that determines the sites of conservation and/or difference in PK sequences, and the differences in the functional and regulatory properties of the enzymes. An alignment and analysis of 50 PK sequences from different sources and a phylogenetic tree are presented. This analysis was performed with reference to crystallographically characterized PK principally from E. coli, cat and rabbit muscle. A number of attributes of the enzyme that make it of particular interest in biomedicine and industry are also discussed.

186 citations

Journal ArticleDOI
TL;DR: Energy metabolism in proliferating cultured rat thymocytes was compared with that of freshly prepared non-proliferating resting cells and formation of acetyl-CoA in the presence of pyruvate might explain the relatively enhanced oxidation of glutamate to CO2 by proliferatingThymocytes.
Abstract: Energy metabolism in proliferating cultured rat thymocytes was compared with that of freshly prepared non-proliferating resting cells. Cultured rat thymocytes enter a proliferative cycle after stimulation by concanavalin A and Lymphocult T (interleukin-2), with maximal rates of DNA synthesis at 60 h. Compared with incubated resting thymocytes, glucose metabolism by incubated proliferating thymocytes was 53-fold increased; 90% of the amount of glucose utilized was converted into lactate, whereas resting cells metabolized only 56% to lactate. However, the latter oxidized 27% of glucose to CO2, as opposed to 1.1% by the proliferating cells. Activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and aldolase in proliferating thymocytes were increased 12-, 17-, 30- and 24-fold respectively, whereas the rate of pyruvate oxidation was enhanced only 3-fold. The relatively low capacity of pyruvate degradation in proliferating thymocytes might be the reason for almost complete conversion of glucose into lactate by these cells. Glutamine utilization by rat thymocytes was 8-fold increased during proliferation. The major end products of glutamine metabolism are glutamate, aspartate, CO2 and ammonia. A complete recovery of glutamine carbon and nitrogen in the products was obtained. The amount of glutamate formed by phosphate-dependent glutaminase which entered the citric acid cycle was enhanced 5-fold in the proliferating cells: 76% was converted into 2-oxoglutarate by aspartate aminotransferase, present in high activity, and the remaining 24% by glutamate dehydrogenase. With resting cells the same percentages were obtained (75 and 25). Maximal activities of glutaminase, glutamate dehydrogenase and aspartate aminotransferase were increased 3-, 12- and 6-fold respectively in proliferating cells; 32% of the glutamate metabolized in the citric acid cycle was recovered in CO2 and 61% in aspartate. In resting cells this proportion was 41% and 59% and in mitogen-stimulated cells 39% and 65% respectively. Addition of glucose (4 mM) or malate (2 mM) strongly decreased the rates of glutamine utilization and glutamate conversion into 2-oxoglutarate by proliferating thymocytes and also affected the pathways of further glutamate metabolism. Addition of 2 mM-pyruvate did not alter the rate of glutamine utilization by proliferating thymocytes, but decreased the rate of metabolism beyond the stage of glutamate significantly. Formation of acetyl-CoA in the presence of pyruvate might explain the relatively enhanced oxidation of glutamate to CO2 (56%) by proliferating thymocytes.

186 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
86% related
Gene expression
113.3K papers, 5.5M citations
84% related
Amino acid
124.9K papers, 4M citations
84% related
Peptide sequence
84.1K papers, 4.3M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023215
2022201
2021147
2020166
2019150
2018138