scispace - formally typeset
Search or ask a question
Topic

Pyruvate kinase

About: Pyruvate kinase is a research topic. Over the lifetime, 5683 publications have been published within this topic receiving 180020 citations. The topic is also known as: ATP:pyruvate 2-O-phosphotransferase & phosphoenolpyruvate kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: It is postulated that phosphoenolpyruvate phosphatase functions to bypass the adenosine diphosphate dependent pyruvating kinase reaction during extended periods of orthophosphate starvation.
Abstract: Phosphoenolpyruvate phosphatase from Brassica nigra leaf petiole suspension cells has been purified 1700-fold to apparent homogeneity and a final specific activity of 380 micromole pyruvate produced per minute per milligram protein. Purification steps included: ammonium sulfate fractionation, S-Sepharose, chelating Sepharose, concanavalin A Sepharose, and Superose 12 chromatography. The native protein was monomeric with a molecular mass of 56 kilodaltons as estimated by analytical gel filtration. The enzyme displayed a broad pH optimum of about pH 5.6 and was relatively heat stable. Western blots of microgram quantities of the final preparation showed no cross-reactivity when probed with rabbit polyclonal antibodies prepared against either castor bean endosperm cytosolic pyruvate kinase, or sorghum leaf phosphoenolpyruvate carboxylase. The final preparation exhibited a broad substrate selectivity, showing high activity toward p-nitrophenyl phosphate, adenosine diphosphate, adenosine triphosphate, gluconate 6-phosphate, and phosphoenolpyruvate, and moderate activity toward several other organic phosphates. Phosphoenolpyruvate phosphatase possessed at least a fivefold and sixfold greater affinity and specificity constant, respectively, for phosphoenolpyruvate (apparent Michaelis constant = 50 micromolar) than for any other nonartificial substrate. The enzyme was activated 1.7-fold by 4 millimolar magnesium, but was strongly inhibited by molybdate, fluoride, zinc, copper, iron, and lead ions, as well as by orthophosphate, ascorbate, glutamate, aspartate, and various organic phosphate compounds. It is postulated that phosphoenolpyruvate phosphatase functions to bypass the adenosine diphosphate dependent pyruvate kinase reaction during extended periods of orthophosphate starvation.

111 citations

Journal ArticleDOI
TL;DR: While there is overlap in the substrates affected by glucagon and the Ca2+-linked hormones, each pathway is able to affect the phosphorylation of unique substrates, suggesting that the two types of hormones may have some distinct effects on hepatic function.

110 citations

Journal ArticleDOI
TL;DR: A mitochondrial model of gluconeogenesis and the tricarboxylic acid cycle, where pyruvate is metabolized via pyruVate carboxylase and pyruviate dehydrogenase, and pyrivate kinase is examined, shows clear trends in radioactivities and isotopic patterns.
Abstract: A mitochondrial model of gluconeogenesis and the tricarboxylic acid cycle, where pyruvate is metabolized via pyruvate carboxylase and pyruvate dehydrogenase, and pyruvate kinase is examined. The effect of the rate of tricarboxylic acid flux and the rates of the three reactions of pyruvate metabolism on the labeling patterns from [14C]pyruvate and [24C]acetate are analyzed. Expressions describing the specific radioactivities and 14C distribution in glucose as a function of these rates are derived. Specific radioactivities and isotopic patterns depend markedly on the ratio of the rates of pyruvate carboxylation and decarboxylation to the rate of citrate synthesis, but the effect of phosphoenolpyruvate hydrolysis is minor. The effects of these rates on 1) specific radioactivity of phosphoenolpyruvate, 2) labeling pattern in glucose, and 3) contribution of pyruvate, acetyl-coenzyme A, and CO2 to glucose carbon are illustrated. To determine the contribution of lactate or alanine to gluconeogenesis, experiments with two compounds labeled in different carbons are required. Methods in current use to correct for the dilution of 14C in gluconeogenesis from [14C]pyruvate are shown to be erroneous. The experimental design and techniques to determine gluconeogenesis from 14C-labeled precursors are presented and illustrated with numerical examples.

110 citations

01 Aug 2015
TL;DR: The structure, function, and regulation of pyruvate kinase (PKM2) are reviewed in this paper, where the authors discuss how these properties enable regulation of PKM2 for cell proliferation and tumor growth.
Abstract: Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. There are four mammalian pyruvate kinase isoforms with unique tissue expression patterns and regulatory properties. The M2 isoform of pyruvate kinase (PKM2) supports anabolic metabolism and is expressed both in cancer and normal tissue. The enzymatic activity of PKM2 is allosterically regulated by both intracellular signaling pathways and metabolites; PKM2 thus integrates signaling and metabolic inputs to modulate glucose metabolism according to the needs of the cell. Recent advances have increased our understanding of metabolic regulation by pyruvate kinase, raised new questions, and suggested the possibility of non-canonical PKM2 functions to regulate gene expression and cell cycle progression via protein-protein interactions and protein kinase activity. Here we review the structure, function, and regulation of pyruvate kinase and discuss how these properties enable regulation of PKM2 for cell proliferation and tumor growth.

110 citations

Journal ArticleDOI
TL;DR: The developmental regulation of muscle bioenergetic metabolism appears to be regulated at the pretranslational level and is modulated by oxygen tension.
Abstract: Changes in the mRNA levels during mammalian myogenesis were compared for seven polypeptides of mitochondrial respiration (the mitochondrial DNA-encoded cytochrome oxidase subunit III, ATP synthase subunit 6, NADH dehydrogenase subunits 1 and 2, and 16S ribosomal RNA; the nuclear encoded ATP synthase beta subunit and the adenine nucleotide translocase) and three polypeptides of glycolysis (glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and triose-phosphate isomerase). Progressive changes during the conversion from myoblasts to myotubes were monitored under both atmospheric oxygen (normoxic) and hypoxic environments. Northern analyses revealed coordinate, biphasic, and reciprocal expression of the respiratory and glycolytic mRNAs during myogenesis. In normoxic cells the mitochondrial respiratory enzymes were highest in myoblasts, declined 3- to 5-fold during commitment and exist from the cell cycle, and increased progressively as the myotubes matured. By contrast, the glycolytic enzyme mRNAs rose 3- to 6-fold on commitment and then progressively declined. When partially differentiated myotubes were switched to hypoxic conditions, the glycolytic enzyme mRNAs increased and the respiratory mRNAs declined. Hence, the developmental regulation of muscle bioenergetic metabolism appears to be regulated at the pretranslational level and is modulated by oxygen tension.

109 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
86% related
Gene expression
113.3K papers, 5.5M citations
84% related
Amino acid
124.9K papers, 4M citations
84% related
Peptide sequence
84.1K papers, 4.3M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023215
2022201
2021147
2020166
2019150
2018138