scispace - formally typeset
Search or ask a question
Topic

Q-learning

About: Q-learning is a research topic. Over the lifetime, 3685 publications have been published within this topic receiving 142499 citations.


Papers
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
TL;DR: This paper presents and proves in detail a convergence theorem forQ-learning based on that outlined in Watkins (1989), showing that Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action- values are represented discretely.
Abstract: \cal Q-learning (Watkins, 1989) is a simple way for agents to learn how to act optimally in controlled Markovian domains. It amounts to an incremental method for dynamic programming which imposes limited computational demands. It works by successively improving its evaluations of the quality of particular actions at particular states. This paper presents and proves in detail a convergence theorem for \cal Q-learning based on that outlined in Watkins (1989). We show that \cal Q-learning converges to the optimum action-values with probability 1 so long as all actions are repeatedly sampled in all states and the action-values are represented discretely. We also sketch extensions to the cases of non-discounted, but absorbing, Markov environments, and where many \cal Q values can be changed each iteration, rather than just one.

8,450 citations

Proceedings Article
29 Nov 1999
TL;DR: This paper proves for the first time that a version of policy iteration with arbitrary differentiable function approximation is convergent to a locally optimal policy.
Abstract: Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented by its own function approximator, independent of the value function, and is updated according to the gradient of expected reward with respect to the policy parameters. Williams's REINFORCE method and actor-critic methods are examples of this approach. Our main new result is to show that the gradient can be written in a form suitable for estimation from experience aided by an approximate action-value or advantage function. Using this result, we prove for the first time that a version of policy iteration with arbitrary differentiable function approximation is convergent to a locally optimal policy.

5,492 citations

01 Jan 2015
TL;DR: In this article, the authors show that the DQN algorithm suffers from substantial overestimation in some games in the Atari 2600 domain, and they propose a specific adaptation to the algorithm and show that this algorithm not only reduces the observed overestimations, but also leads to much better performance on several games.
Abstract: The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether they harm performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-learning with a deep neural network, suffers from substantial overestimations in some games in the Atari 2600 domain. We then show that the idea behind the Double Q-learning algorithm, which was introduced in a tabular setting, can be generalized to work with large-scale function approximation. We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not only reduces the observed overestimations, as hypothesized, but that this also leads to much better performance on several games.

4,301 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
86% related
Artificial neural network
207K papers, 4.5M citations
85% related
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202389
2022199
2021348
2020414
2019424
2018260