Topic
QR decomposition
About: QR decomposition is a(n) research topic. Over the lifetime, 3504 publication(s) have been published within this topic receiving 100599 citation(s). The topic is also known as: QR factorization.
Papers published on a yearly basis
Papers
More filters
TL;DR: This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation, and presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions.
Abstract: Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the $k$ dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
2,880 citations
Posted Content•
TL;DR: In this article, a modular framework for constructing randomized algorithms that compute partial matrix decompositions is presented, which uses random sampling to identify a subspace that captures most of the action of a matrix and then the input matrix is compressed to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization.
Abstract: Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.
This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.
2,356 citations
Book•
11 Jun 1973
TL;DR: Rounding-Error Analysis of Solution of Triangular Systems and of Gaussian Elimination.
Abstract: Preliminaries Practicalities The Direct Solution of Linear Systems Norms, Limits, and Condition Numbers The Linear Least Squares Problem Eigenvalues and Eigenvectors The QR Algorithm The Greek Alphabet and Latin Notational Correspondents Determinants Rounding-Error Analysis of Solution of Triangular Systems and of Gaussian Elimination Of Things Not Treated Bibliography Index
2,029 citations
TL;DR: Identification algorithms based on the well-known linear least squares methods of gaussian elimination, Cholesky decomposition, classical Gram-Schmidt, modified Gram- Schmidt, Householder transformation, Givens method, and singular value decomposition are reviewed.
Abstract: Identification algorithms based on the well-known linear least squares methods of gaussian elimination, Cholesky decomposition, classical Gram-Schmidt, modified Gram-Schmidt, Householder transformation, Givens method, and singular value decomposition are reviewed. The classical Gram-Schmidt, modified Gram-Schmidt, and Householder transformation algorithms are then extended to combine structure determination, or which terms to include in the model, and parameter estimation in a very simple and efficient manner for a class of multivariate discrete-time non-linear stochastic systems which are linear in the parameters.
1,529 citations