scispace - formally typeset
Search or ask a question
Topic

QR decomposition

About: QR decomposition is a research topic. Over the lifetime, 3504 publications have been published within this topic receiving 100599 citations. The topic is also known as: QR factorization.


Papers
More filters
Journal ArticleDOI
Ji-guang Sun1
TL;DR: Borders of this note improve the known bounds in the literature and certain new perturbation bounds of the orthogonal factor in the QR factorization of a real matrix are derived.

32 citations

Journal ArticleDOI
TL;DR: It is argued that perturbing towards the orthonormal polar factor is an attractive choice, and it is shown that the perturbations improve the departure from orthonormality without significantly degrading the finite-time global error bound for the ODE solution.
Abstract: Certain applications produce initial value ODEs whose solutions, regarded as time-dependent matrices, preserve orthonormality. Such systems arise in the computation of Lyapunov exponents and the construction of smooth singular value decompositions of parametrized matrices. For some special problem classes, there exist time-stepping methods that automatically inherit the orthonormality preservation. However, a more widely applicable approach is to apply a standard integrator and regularly replace the approximate solution by an orthonormal matrix. Typically, the approximate solution is replaced by the factorQ from its QR decomposition (computed, for example, by the modified Gram-Schmidt method). However, the optimal replacement—the one that is closest in the Frobenius norm—is given by the orthonormal polar factor. Quadratically convergent iteration schemes can be used to compute this factor. In particular, there is a matrix multiplication based iteration that is ideally suited to modern computer architectures. Hence, we argue that perturbing towards the orthonormal polar factor is an attractive choice, and we consider performing a fixed number of iterations. Using the optimality property we show that the perturbations improve the departure from orthonormality without significantly degrading the finite-time global error bound for the ODE solution. Our analysis allows for adaptive time-stepping, where a local error control process is driven by a user-supplied tolerance. Finally, using a recent result of Sun, we show how the global error bound carries through to the case where the orthonormal QR factor is used instead of the orthonormal polar factor.

32 citations

Journal ArticleDOI
TL;DR: How Z can be obtained by updating an explicit QR factorization with Householder transformations is described and why the chosen form ofZ is convenient in certain methods for nonlinearly constrained optimization is indicated.
Abstract: Given a rectangular matrix A(x) that depends on the independent variables x, many constrained optimization methods involve computations with Z(x), a matrix whose columns form a basis for the null space of A/sup T/(x). When A is evaluated at a given point, it is well known that a suitable Z (satisfying A/sup T/Z = 0) can be obtained from standard matrix factorizations. However, Coleman and Sorensen have recently shown that standard orthogonal factorization methods may produce orthogonal bases that do not vary continuously with x; they also suggest several techniques for adapting these schemes so as to ensure continuity of Z in the neighborhood of a given point. This paper is an extension of an earlier note that defines the procedure for computing Z. Here, we first describe how Z can be obtained by updating an explicit QR factorization with Householder transformations. The properties of this representation of Z with respect to perturbations in A are discussed, including explicit bounds on the change in Z. We then introduce regularized Householder transformations, and show that their use implies continuity of the full matrix Q. The convergence of Z and Q under appropriate assumptions is then proved. Finally, we indicate why themore » chosen form of Z is convenient in certain methods for nonlinearly constrained optimization.« less

32 citations

01 Jan 2008
TL;DR: In this paper, the authors used the idea of updating of QR factorization, rendering an algorithm which is much more scalable and much more suitable for implementation on a multi-core processor.
Abstract: The QR factorization is one of the most important operations in dense linear algebra, offering a numerically stable method for solving linear systems of equations including overdetermined and underdetermined systems. Classic implementation of the QR factorization suffers from performance limitations due to the use of matrix-vector type operations in the phase of panel factorization. These limitations can be remedied by using the idea of updating of QR factorization, rendering an algorithm, which is much more scalable and much more suitable for implementation on a multi-core processor. It is demonstrated how the potential of the CELL processor can be utilized to the fullest by employing the new algorithmic approach and successfully exploiting the capabilities of the CELL processor in terms of Instruction Level Parallelism and Thread-Level Parallelism.

31 citations

Journal ArticleDOI
TL;DR: This work proposes a new approach to find the interpolation points based on the centroidal Voronoi tessellation (CVT) method, which offers a much less expensive alternative to the QRCP procedure when ISDF is used in the context of hybrid functional electronic structure calculations.
Abstract: The recently developed interpolative separable density fitting (ISDF) decomposition is a powerful way for compressing the redundant information in the set of orbital pairs and has been used to accelerate quantum chemistry calculations in a number of contexts. The key ingredient of the ISDF decomposition is to select a set of nonuniform grid points, so that the values of the orbital pairs evaluated at such grid points can be used to accurately interpolate those evaluated at all grid points. The set of nonuniform grid points, called the interpolation points, can be automatically selected by a QR factorization with column pivoting (QRCP) procedure. This is the computationally most expensive step in the construction of the ISDF decomposition. In this work, we propose a new approach to find the interpolation points based on the centroidal Voronoi tessellation (CVT) method, which offers a much less expensive alternative to the QRCP procedure when ISDF is used in the context of hybrid functional electronic struc...

31 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
85% related
Network packet
159.7K papers, 2.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202273
202190
2020132
2019126
2018139