scispace - formally typeset

Topic

Quality of service

About: Quality of service is a(n) research topic. Over the lifetime, 77165 publication(s) have been published within this topic receiving 996632 citation(s). The topic is also known as: QoS & qos.


Papers
More filters
Journal ArticleDOI
01 May 2005
TL;DR: The three main categories explored in this paper are data-centric, hierarchical and location-based; each routing protocol is described and discussed under the appropriate category.
Abstract: Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues. � 2003 Elsevier B.V. All rights reserved.

3,501 citations

Journal ArticleDOI
TL;DR: An architectural framework and principles for energy-efficient Cloud computing are defined and the proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS).
Abstract: Cloud computing offers utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of electrical energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only minimize operational costs but also reduce the environmental impact. In this paper, we define an architectural framework and principles for energy-efficient Cloud computing. Based on this architecture, we present our vision, open research challenges, and resource provisioning and allocation algorithms for energy-efficient management of Cloud computing environments. The proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS). In particular, in this paper we conduct a survey of research in energy-efficient computing and propose: (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering QoS expectations and power usage characteristics of the devices; and (c) a number of open research challenges, addressing which can bring substantial benefits to both resource providers and consumers. We have validated our approach by conducting a performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant cost savings and demonstrates high potential for the improvement of energy efficiency under dynamic workload scenarios.

2,257 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

1,918 citations

Journal ArticleDOI
TL;DR: This paper first examines the basic problem of QoS routing, namely, finding a path that satisfies multiple constraints, and its implications on routing metric selection, and presents three path computation algorithms for source routing and for hop-by-hop routing.
Abstract: Several new architectures have been developed for supporting multimedia applications such as digital video and audio. However, quality-of-service (QoS) routing is an important element that is still missing from these architectures. In this paper, we consider a number of issues in QoS routing. We first examine the basic problem of QoS routing, namely, finding a path that satisfies multiple constraints, and its implications on routing metric selection, and then present three path computation algorithms for source routing and for hop-by-hop routing.

1,713 citations

Book
05 Apr 2006
Abstract: Information flow in a telecommunication network is accomplished through the interaction of mechanisms at various design layers with the end goal of supporting the information exchange needs of the applications. In wireless networks in particular, the different layers interact in a nontrivial manner in order to support information transfer. In this text we will present abstract models that capture the cross-layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor networks as well as hybrid wireless-wireline. The model allows for arbitrary network topologies as well as traffic forwarding modes, including datagrams and virtual circuits. Furthermore the time varying nature of a wireless network, due either to fading channels or to changing connectivity due to mobility, is adequately captured in our model to allow for state dependent network control policies. Quantitative performance measures that capture the quality of service requirements in these systems depending on the supported applications are discussed, including throughput maximization, energy consumption minimization, rate utility function maximization as well as general performance functionals. Cross-layer control algorithms with optimal or suboptimal performance with respect to the above measures are presented and analyzed. A detailed exposition of the related analysis and design techniques is provided.

1,574 citations


Network Information
Related Topics (5)
Wireless network

122.5K papers, 2.1M citations

97% related
Wireless ad hoc network

49K papers, 1.1M citations

97% related
Network packet

159.7K papers, 2.2M citations

97% related
Mobile computing

51.3K papers, 1M citations

95% related
Wireless sensor network

142K papers, 2.4M citations

95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202256
20212,462
20203,129
20193,357
20183,535
20173,352