Topic

# Quantum algorithm

About: Quantum algorithm is a research topic. Over the lifetime, 18369 publications have been published within this topic receiving 707266 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

01 Jan 2000

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.

Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,609 citations

••

[...]

TL;DR: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing, with a focus on entanglement.

Abstract: This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing.
The first two papers deal with entanglement. The paper by R. Mosseri and P. Ribeiro presents a detailed description of the two-and three-qubit geometry in Hilbert space, dealing with the geometry of fibrations and discrete geometry. The paper by J.-G.Luque et al. is more algebraic and considers invariants of pure k-qubit states and their application to entanglement measurement.

12,173 citations

••

[...]

Bell Labs

^{1}TL;DR: Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given.

Abstract: A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. We thus give the first examples of quantum cryptanalysis. >

5,655 citations

••

[...]

Bell Labs

^{1}TL;DR: In this paper, it was shown that a quantum mechanical computer can solve integer factorization problem in a finite power of O(log n) time, where n is the number of elements in a given integer.

Abstract: were proposed in the early 1980’s [Benioff80] and shown to be at least as powerful as classical computers an important but not surprising result, since classical computers, at the deepest level, ultimately follow the laws of quantum mechanics. The description of quantum mechanical computers was formalized in the late 80’s and early 90’s [Deutsch85][BB92] [BV93] [Yao93] and they were shown to be more powerful than classical computers on various specialized problems. In early 1994, [Shor94] demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers. This is the problem of integer factorization, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) . ----------------------------------------------

5,636 citations

••

[...]

TL;DR: In this paper, the notion of a quantum dynamical semigroup is defined using the concept of a completely positive map and an explicit form of a bounded generator of such a semigroup onB(ℋ) is derived.

Abstract: The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum analogue of the Levy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained.

5,485 citations