scispace - formally typeset
Search or ask a question
Topic

Quantum capacitance

About: Quantum capacitance is a research topic. Over the lifetime, 954 publications have been published within this topic receiving 24165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A semi-analytical model incorporating the effects of edge bond relaxation, the third nearest neighbor interactions, and edge scattering in graphene nanoribbon field effect transistors (GNRFETs) with armchair-edge GNR (AGNR) channels was presented in this paper.
Abstract: We present a semi-analytical model incorporating the effects of edge bond relaxation, the third nearest neighbor interactions, and edge scattering in graphene nanoribbon field-effect transistors (GNRFETs) with armchair-edge GNR (AGNR) channels. Unlike carbon nanotubes (CNTs) which do not have edges, the existence of edges in the AGNRs has a significant effect on the quantum capacitance and ballistic I-V characteristics of GNRFETs. For an AGNR with an index of m=3p, the band gap decreases and the ON current increases whereas for an AGNR with an index of m=3p+1, the quantum capacitance increases and the ON current decreases. The effect of edge scattering, which reduces the ON current, is also included in the model.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a fully analytical ballistic theory of carbon nanotube field effect transistors enabled by the development of an analytical surface potential capturing the temperature dependence and gate and quantum capacitance electrostatics.
Abstract: We developed a fully analytical ballistic theory of carbon nanotube field effect transistors enabled by the development of an analytical surface potential capturing the temperature dependence and gate and quantum capacitance electrostatics. The analytical ballistic theory is compared to the experimental results of a ballistic transistor with good agreement. The validated analytical theory enables intuitive circuit design, provides techniques for parameter extraction of the bandgap and surface potential, and elucidates on the device physics of drain optical phonon scattering and its role in reducing the linear conductance and intrinsic gain of the transistor. Furthermore, a threshold voltage definition is proposed reflecting the bandgap-diameter dependence. Projections for key analog and digital performances are discussed.

60 citations

Journal ArticleDOI
TL;DR: In this article, a physics-based model is shown to yield the small-signal equivalent circuit of the resonant tunneling diode (RTD) including an analytic expression for both the quantum inductance and capacitance.
Abstract: A physics-based model is shown to yield the small-signal equivalent circuit of the resonant tunneling diode (RTD) including an analytic expression for both the quantum inductance and capacitance. This model unifies previous models by Brown et al. for quantum inductance and by Lake and Yang for quantum capacitance, and extends the RTD SPICE model of Broekaert. The equivalent circuit has been fit to both current-voltage and microwave S-parameter measurements of AlAs-InGaAs-InAs-InGaAs-AlAs RTDs from 45 MHz to 30 GHz and over biases from 0 to 0.81 V. Good agreement between the model and measurement is shown.

59 citations

Journal ArticleDOI
TL;DR: This review of graphene devices in solution, and their properties that are relevant to chemical and biological applications, will discuss their charge transport, controlled by electrochemical gates, interfacial and quantum capacitance, charged impurities, and surface potential distribution.
Abstract: Single-layer graphene has received much attention because of its unique two-dimensional crystal structure and properties. In this review, we focus on the graphene devices in solution, and their properties that are relevant to chemical and biological applications. We will discuss their charge transport, controlled by electrochemical gates, interfacial and quantum capacitance, charged impurities, and surface potential distribution. The sensitive dependence of graphene charge transport on the surrounding environment points to their potential applications as ultrasensitive chemical sensors and biosensors. The interfacial and quantum capacitance studies are directly relevant to the on-going effort of creating graphene-based ultracapacitors for energy storage.

59 citations

Journal ArticleDOI
TL;DR: The results show that sub-femtojoule per bit switching energies and peak-to-peak voltages less than 0.1 V are achievable in graphene-on-graphene optical modulators using the constraint of 3 dB extinction ratio and 3 dB insertion loss.
Abstract: The fundamental switching energy limitations for waveguide coupled graphene-on-graphene optical modulators are described. The minimum energy is calculated under the constraints of fixed insertion loss and extinction ratio. Analytical relations for the switching energy both for realistic structures and in the quantum capacitance limit are derived and compared with numerical simulations. The results show that sub-femtojoule per bit switching energies and peak-to-peak voltages less than 0.1 V are achievable in graphene-on-graphene optical modulators using the constraint of 3 dB extinction ratio and 3 dB insertion loss. The quantum-capacitance limited switching energy for a single TE-mode modulator geometry is found to be < 0.5 fJ/bit at λ = 1.55 μm, and the dependences of the minimum energy on the waveguide geometry, wavelength, and graphene location are investigated. The low switching energy is a result of the very strong optical absorption in graphene, and the extremely-small operating voltages needed as the device approaches the quantum capacitance regime.

58 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
85% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Band gap
86.8K papers, 2.2M citations
85% related
Graphene
144.5K papers, 4.9M citations
83% related
Thin film
275.5K papers, 4.5M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202238
202162
202062
201965
201858