scispace - formally typeset
Search or ask a question
Topic

Quantum dissipation

About: Quantum dissipation is a research topic. Over the lifetime, 11683 publications have been published within this topic receiving 388898 citations.


Papers
More filters
Book
01 Jan 1965
TL;DR: Au sommaire as discussed by the authors developed the concepts of quantum mechanics with special examples and developed the perturbation method in quantum mechanics and the variational method for probability problems in quantum physics.
Abstract: Au sommaire : 1.The fundamental concepts of quantum mechanics ; 2.The quantum-mechanical law of motion ; 3.Developing the concepts with special examples ; 4.The schrodinger description of quantum mechanics ; 5.Measurements and operators ; 6.The perturbation method in quantum mechanics ; 7.Transition elements ; 8.Harmonic oscillators ; 9.Quantum electrodynamics ; 10.Statistical mechanics ; 11.The variational method ; 12.Other problems in probability.

8,141 citations

Journal ArticleDOI
TL;DR: In this paper, the notion of a quantum dynamical semigroup is defined using the concept of a completely positive map and an explicit form of a bounded generator of such a semigroup onB(ℋ) is derived.
Abstract: The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum analogue of the Levy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained.

6,381 citations

Book
29 Aug 2002
TL;DR: Probability in classical and quantum physics has been studied in this article, where classical probability theory and stochastic processes have been applied to quantum optical systems and non-Markovian dynamics in physical systems.
Abstract: PREFACE ACKNOWLEDGEMENTS PART 1: PROBABILITY IN CLASSICAL AND QUANTUM MECHANICS 1. Classical probability theory and stochastic processes 2. Quantum Probability PART 2: DENSITY MATRIX THEORY 3. Quantum Master Equations 4. Decoherence PART 3: STOCHASTIC PROCESSES IN HILBERT SPACE 5. Probability distributions on Hilbert space 6. Stochastic dynamics in Hilbert space 7. The stochastic simulation method 8. Applications to quantum optical systems PART 4: NON-MARKOVIAN QUANTUM PROCESSES 9. Projection operator techniques 10. Non-Markovian dynamics in physical systems PART 5: RELATIVISTIC QUANTUM PROCESSES 11. Measurements in relativistic quantum mechanics 12. Open quantum electrodynamics

6,325 citations

Journal ArticleDOI
TL;DR: In this paper, a universal set of one-and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots is proposed, and the desired operations are effected by the gating of the tunneling barrier between neighboring dots.
Abstract: We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium spin dynamics are proposed.

5,801 citations


Network Information
Related Topics (5)
Quantum
60K papers, 1.2M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
96% related
Quantum entanglement
39.5K papers, 1M citations
95% related
Quantum information
22.7K papers, 911.3K citations
93% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202271
202119
202013
201917
201855