scispace - formally typeset
Search or ask a question

Showing papers on "Quantum dot published in 2020"


Journal ArticleDOI
TL;DR: Perovskite QD resurfacing is reported to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules, to fabricate blue and green light-emitting diodes with improved mobility.
Abstract: Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids—necessary for device fabrication—requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V−1 s−1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%. A solution-based ligand-exchange strategy enables the realization of close-packed quantum dot solid films with near-unity photoluminescence quantum yield and high charge carrier mobility.

451 citations


Journal ArticleDOI
TL;DR: In this article, an effective oleic acid (OA) ligand-assisted cation exchange strategy was proposed for controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range.
Abstract: The mixed caesium and formamidinium lead triiodide perovskite system (Cs1−xFAxPbI3) in the form of quantum dots (QDs) offers a pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective oleic acid (OA) ligand-assisted cation-exchange strategy that allows controllable synthesis of Cs1−xFAxPbI3 QDs across the whole composition range (x = 0–1), which is inaccessible in large-grain polycrystalline thin films. In an OA-rich environment, the cross-exchange of cations is facilitated, enabling rapid formation of Cs1−xFAxPbI3 QDs with reduced defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that the QD devices exhibit substantially enhanced photostability compared with their thin-film counterparts because of suppressed phase segregation, and they retain 94% of the original PCE under continuous 1-sun illumination for 600 h.

355 citations


Journal ArticleDOI
TL;DR: Micrometre-sized light-emitting diodes (LEDs) based on quantum dots (QDs) will propel the next generation of display technologies, a review by leading researchers shows.
Abstract: Micro-light-emitting diodes (μ-LEDs) are regarded as the cornerstone of next-generation display technology to meet the personalised demands of advanced applications, such as mobile phones, wearable watches, virtual/augmented reality, micro-projectors and ultrahigh-definition TVs. However, as the LED chip size shrinks to below 20 μm, conventional phosphor colour conversion cannot present sufficient luminance and yield to support high-resolution displays due to the low absorption cross-section. The emergence of quantum dot (QD) materials is expected to fill this gap due to their remarkable photoluminescence, narrow bandwidth emission, colour tuneability, high quantum yield and nanoscale size, providing a powerful full-colour solution for μ-LED displays. Here, we comprehensively review the latest progress concerning the implementation of μ-LEDs and QDs in display technology, including μ-LED design and fabrication, large-scale μ-LED transfer and QD full-colour strategy. Outlooks on QD stability, patterning and deposition and challenges of μ-LED displays are also provided. Finally, we discuss the advanced applications of QD-based μ-LED displays, showing the bright future of this technology. Micrometre-sized light-emitting diodes (LEDs) based on quantum dots (QDs) will propel the next generation of display technologies, a review by leading researchers shows. Conventional LED designs, with phosphor coatings that convert light to different colours, are difficult to make smaller than 20 micrometres. Jr-Hau He at City University of Hong Kong and co-workers explain how this problem can be tackled using QDs, tiny particles whose optical properties can be tuned by varying their size, providing brighter and more precise colours. Ultra-high-resolution displays based on phospholuminescent QD-LEDs are now being released to the market thanks to finely-controlled methods for synthesising QDs and depositing them onto films. Further research should focus on the best ways to stabilise and protect QD films within LEDs, and to continue developing electroluminescent QD-LEDs, which could potentially outperform their phospholuminescent cousins.

323 citations


Journal ArticleDOI
TL;DR: The universal electron-donating/withdrawing group engineering approach for synthesizing tunable emissive CQDs will facilitate the progress of carbon-based luminescent materials for manufacturing forward-looking films and devices.
Abstract: Quantum dots have innate advantages as the key component of optoelectronic devices. For white light-emitting diodes (WLEDs), the modulation of the spectrum and color of the device often involves various quantum dots of different emission wavelengths. Here, we fabricate a series of carbon quantum dots (CQDs) through a scalable acid reagent engineering strategy. The growing electron-withdrawing groups on the surface of CQDs that originated from acid reagents boost their photoluminescence wavelength red shift and raise their particle sizes, elucidating the quantum size effect. These CQDs emit bright and remarkably stable full-color fluorescence ranging from blue to red light and even white light. Full-color emissive polymer films and all types of high-color rendering index WLEDs are synthesized by mixing multiple kinds of CQDs in appropriate ratios. The universal electron-donating/withdrawing group engineering approach for synthesizing tunable emissive CQDs will facilitate the progress of carbon-based luminescent materials for manufacturing forward-looking films and devices.

281 citations


Journal ArticleDOI
14 Oct 2020-Nature
TL;DR: It is found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure and chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties.
Abstract: The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots. Cadmium-free blue quantum dot light-emitting diodes are constructed with a quantum yield of unity, an efficiency at the theoretical limit, high brightness and long operational lifetime.

280 citations


Journal ArticleDOI
TL;DR: In this paper, it is shown that it is possible to write on demand 3D patterns of perovskite quantum dots (QDs) inside a transparent glass material using a femtosecond laser.
Abstract: The three-dimensional (3D) patterning of semiconductors is potentially important for exploring new functionalities and applications in optoelectronics1,2. Here, we show that it is possible to write on demand 3D patterns of perovskite quantum dots (QDs) inside a transparent glass material using a femtosecond laser. By utilizing the inherent ionic nature and low formation energy of perovskite, highly luminescent CsPbBr3 QDs can be reversibly fabricated in situ and decomposed through femtosecond laser irradiation and thermal annealing. This pattern of writing and erasing can be repeated for many cycles, and the luminescent QDs are well protected by the inorganic glass matrix, resulting in stable perovskite QDs with potential applications such as high-capacity optical data storage, information encryption and 3D artwork. Luminescent CsPbBr3 quantum dots can be written into glass using femtosecond laser pulses and thermal annealing, and erased by further femtosecond laser irradiation. The resulting quantum dot patterns could prove useful for data storage, decoration or security purposes.

270 citations


Journal ArticleDOI
TL;DR: In this article, deep-blue high-colour-purity light-emitting materials are developed by using amine-based edge passivation, and they exhibit a maximum luminance of 5,240 cd m−2 and an external quantum efficiency of 4%.
Abstract: Deep-blue light-emitting diodes (LEDs) (emitting at wavelengths of less than 450 nm) are important for solid-state lighting, vivid displays and high-density information storage. Colloidal quantum dots, typically based on heavy metals such as cadmium and lead, are promising candidates for deep-blue LEDs, but these have so far had external quantum efficiencies lower than 1.7%. Here we present deep-blue light-emitting materials and devices based on carbon dots. The carbon dots produce emission with a narrow full-width at half-maximum (about 35 nm) with high photoluminescence quantum yield (70% ± 10%) and a colour coordinate (0.15, 0.05) closely approaching the standard colour Rec. 2020 (0.131, 0.046) specification. Structural and optical characterization, together with computational studies, reveal that amine-based passivation accounts for the efficient and high-colour-purity emission. Deep-blue LEDs based on these carbon dots display high performance with a maximum luminance of 5,240 cd m−2 and an external quantum efficiency of 4%, notably exceeding that of previously reported quantum-tuned solution-processed deep-blue LEDs. Deep-blue high-colour-purity light-emitting materials are developed by using amine-based edge passivation. The light-emitting diodes based on the carbon dots exhibit a maximum luminance of 5,240 cd m–2 and an external quantum efficiency of 4%.

258 citations


Journal ArticleDOI
15 Apr 2020-Nature
TL;DR: This work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped 4 He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array.
Abstract: Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers—typically millions—of quantum bits (qubits)1–3. For most solid-state qubit technologies—for example, those using superconducting circuits or semiconductor spins—scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)4–6. Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots7–9. We coherently control the qubits using electrically driven spin resonance10,11 in isotopically enriched silicon12 28Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during ‘hot’ operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures13–16. Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures8,17. Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped 4He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array18,19. A scalable silicon quantum processor unit cell made of two qubits confined to quantum dots operates at about 1.5 K, achieving 98.6% single-qubit gate fidelities and a 2 μs coherence time.

241 citations


Journal ArticleDOI
TL;DR: This work comprehensively review recent advances in the synthesis and optoelectronic properties of films, microcrystals, nanocrystals and quantum dots of lead halide and lead-free halide perovskites and addresses the ensemble and single particle properties of perovkites from the viewpoints of the confinement and transport of charge carriers or excitons.
Abstract: Halide perovskites have emerged as a class of most promising and cost-effective semiconductor materials for next generation photoluminescent, electroluminescent and photovoltaic devices. These perovskites have high optical absorption coefficients and exhibit narrow-band bright photoluminescence, in addition to their halide-dependent tuneable bandgaps, low exciton binding energies, and long-range carrier diffusion. These properties make these perovskites superior to classical semiconductors such as silicon. Most importantly, the simple synthesis of perovskites in the form of high quality films, single crystals, nanocrystals and quantum dots has attracted newcomers to develop novel perovskites with unique optoelectronic properties for optical and photovoltaic applications. Here, we comprehensively review recent advances in the synthesis and optoelectronic properties of films, microcrystals, nanocrystals and quantum dots of lead halide and lead-free halide perovskites. Followed by the classification of synthesis, we address the ensemble and single particle properties of perovskites from the viewpoints of the confinement and transport of charge carriers or excitons. Further, we correlate the charge carrier properties of perovskite films, microcrystals, nanocrystals and quantum dots with the crystal structure and size, halide composition, temperature, and pressure. Finally, we illustrate the emerging applications of perovskites to solar cells, LEDs, and lasers, and discuss the ongoing challenges in the field.

210 citations


Journal ArticleDOI
15 Apr 2020-Nature
TL;DR: The demonstration of ‘hot’ and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.
Abstract: Quantum computation requires many qubits that can be coherently controlled and coupled to each other1. Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology2-5. However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes6, gate-based spin readout7 and coherent single-spin control8. However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of 'hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.

201 citations


Journal ArticleDOI
TL;DR: An efficient electron transport layer (ETL) plays a key role in promoting carrier separation and electron extraction in planar perovskite solar cells (PSCs), and an effective composite ETL is fabricated using carboxylic acid and hydroxyl-rich red carbon quantum dots (RCQs) to dope low-temperature solution-processed SnO2, which dramatically increases its electron mobility by ≈20 times from 9.32 × 10-4 to 1.73 × 10 2 cm2 V-1 s-1.
Abstract: An efficient electron transport layer (ETL) plays a key role in promoting carrier separation and electron extraction in planar perovskite solar cells (PSCs). An effective composite ETL is fabricated using carboxylic-acid- and hydroxyl-rich red-carbon quantum dots (RCQs) to dope low-temperature solution-processed SnO2 , which dramatically increases its electron mobility by ≈20 times from 9.32 × 10-4 to 1.73 × 10-2 cm2 V-1 s-1 . The mobility achieved is one of the highest reported electron mobilities for modified SnO2 . Fabricated planar PSCs based on this novel SnO2 ETL demonstrate an outstanding improvement in efficiency from 19.15% for PSCs without RCQs up to 22.77% and have enhanced long-term stability against humidity, preserving over 95% of the initial efficiency after 1000 h under 40-60% humidity at 25 °C. These significant achievements are solely attributed to the excellent electron mobility of the novel ETL, which is also proven to help the passivation of traps/defects at the ETL/perovskite interface and to promote the formation of highly crystallized perovskite, with an enhanced phase purity and uniformity over a large area. These results demonstrate that inexpensive RCQs are simple but excellent additives for producing efficient ETLs in stable high-performance PSCs as well as other perovskite-based optoelectronics.

Journal ArticleDOI
17 Sep 2020-ACS Nano
TL;DR: A mechanistic insight is presented into the halogen-involved catalytic reaction mechanism in solar fuel production by optimizing the coordination modes of surface-bound intermediate species and reducing the reaction energy of rate-limiting step of COOH- intermediate formation from CO2-.
Abstract: All-inorganic Pb-free bismuth (Bi) halogen perovskite quantum dots (PQDs) with distinct structural and photoelectric properties provide plenty of room for selective photoreduction of CO2. However, ...

Journal ArticleDOI
TL;DR: In this article, a one-step in situ method under room temperature in air is proposed to synthesize CsPbBr3 QDs coated with SiO2 (CsPbBR3@SiO2), where the whole process takes only 20

Journal ArticleDOI
TL;DR: A bilateral passivation strategy through passivating both top and bottom interfaces of QD film with organic molecules is proposed, which increases the external quantum efficiency (EQE) and lifetime by more than 2-fold and 20-fold, respectively.
Abstract: Perovskite quantum-dot-based light-emitting diodes (QLEDs) possess the features of wide gamut and real color expression, which have been considered as candidates for high-quality lightings and displays. However, massive defects are prone to be reproduced during the quantum dot (QD) film assembly, which would sorely affect carrier injection, transportation and recombination, and finally degrade QLED performances. Here, we propose a bilateral passivation strategy through passivating both top and bottom interfaces of QD film with organic molecules, which has drastically enhanced the efficiency and stability of perovskite QLEDs. Various molecules were applied, and comparison experiments were conducted to verify the necessity of passivation on both interfaces. Eventually, the passivated device achieves a maximum external quantum efficiency (EQE) of 18.7% and current efficiency of 75 cd A−1. Moreover, the operational lifetime of QLEDs is enhanced by 20-fold, reaching 15.8 h. These findings highlight the importance of interface passivation for efficient and stable QD-based optoelectronic devices. Perovskite quantum-dots are promising candidates for light-emitting diodes but the defects limit the device performance. Here Xu et al. show a passivation strategy to reduce the defect density at both interfaces, which increases the external quantum efficiency (EQE) and lifetime by more than 2-fold and 20-fold, respectively.

Journal ArticleDOI
TL;DR: A broad spectrum overview of the QD-based single photon emitters developed to date, from the telecommunication bands in the IR to the deep UV, can be found in this article.
Abstract: Semiconductor quantum dots (QDs) of various material systems are being heavily researched for the development of solid state single photon emitters, which are required for optical quantum computing and related technologies such as quantum key distribution and quantum metrology. In this review article, we give a broad spectrum overview of the QD-based single photon emitters developed to date, from the telecommunication bands in the IR to the deep UV.

Journal ArticleDOI
TL;DR: The BiVO4/C60/g-C3N4 ternary heterostructure composite was synthesized by a simple hydrothermal method by loading BiVO 4 quantum dots (QDs) onto the surface of C60/G-C 3N4, which has excellent photocatalytic activity under visible light irradiation.

Journal ArticleDOI
TL;DR: A gated quantum dot in an open, tunable microcavity now can create single photons on-demand with an end-to-end efficiency of 57%, preserving coherence over microsecond-long trains of single photons.
Abstract: A single photon source is a key enabling technology in device-independent quantum communication, quantum simulation for instance boson sampling, linear optics-based and measurement-based quantum computing. These applications involve many photons and therefore place stringent requirements on the efficiency of single photon creation. The scaling on efficiency is an exponential function of the number of photons. Schemes taking full advantage of quantum superpositions also depend sensitively on the coherence of the photons, i.e. their indistinguishability. It is therefore crucial to maintain the coherence over long strings of photons. Here, we report a single photon source with an especially high system efficiency: a photon is created on-demand at the output of the final optical fibre with a probability of 57%. The coherence of the photons is very high and is maintained over a stream consisting of thousands of photons; the repetition rate is in the GHz regime. We break with the established semiconductor paradigms, such as micropillars, photonic crystal cavities and waveguides. Instead, we employ gated quantum dots in an open, tunable microcavity. The gating ensures low-noise operation; the tunability compensates for the lack of control in quantum dot position and emission frequency; the output is very well-matched to a single-mode fibre. An increase in efficiency over the state-of-the-art by more than a factor of two, as reported here, will result in an enormous decrease in run-times, by a factor of $10^{7}$ for 20 photons.

Journal ArticleDOI
TL;DR: A cascade surface modification scheme is introduced that provides control over doping and solubility and enables n-type and p-type CQD inks that are fully miscible in the same solvent with complete surface passivation and enables the realization of homogeneous C QD bulk homojunction films that exhibit a 1.5 times increase in carrier diffusion length.
Abstract: Control over carrier type and doping levels in semiconductor materials is key for optoelectronic applications. In colloidal quantum dots (CQDs), these properties can be tuned by surface chemistry modification, but this has so far been accomplished at the expense of reduced surface passivation and compromised colloidal solubility; this has precluded the realization of advanced architectures such as CQD bulk homojunction solids. Here we introduce a cascade surface modification scheme that overcomes these limitations. This strategy provides control over doping and solubility and enables n-type and p-type CQD inks that are fully miscible in the same solvent with complete surface passivation. This enables the realization of homogeneous CQD bulk homojunction films that exhibit a 1.5 times increase in carrier diffusion length compared with the previous best CQD films. As a result, we demonstrate the highest power conversion efficiency (13.3%) reported among CQD solar cells. It is challenging to realize doping and surface passivation simultaneously in colloidal quantum dot inks. Here Choi et al. employ a cascade surface modification approach to solve the problem and obtain record high efficiency of 13.3% for bulk homojunction solar cells based on these inks.

Journal ArticleDOI
TL;DR: In this paper, a successful synthesis of CdSe quantum dots (QDs) modified phosphorus doped g-C3N4 (P-CN) for advanced photocatalytic applications is reported.
Abstract: Solar energy harvesting and conversion into useful chemical energy with the aid of semiconductor photocatalysts is a promising technique to solve both energy and environmental issues. This work reports a successful synthesis of CdSe quantum dots (QDs) modified phosphorus doped g-C3N4 (P-CN) for advanced photocatalytic applications. Phosphorus doping and structural coupling with CdSe QDs are shown to significantly extend visible-light response of g-C3N4 up to 700 nm. The optimized sample 4CdSe/P-CN demonstrates enhanced visible-light driven overall water splitting activities for H2 and O2 evolution i.e. 113 and 55.5 μmol.h−1. g−1, respectively, as well as very high photocatalytic CO2 to CH4 conversion efficiency (47 μmol.h−1. g−1). It also exhibit higher activity (78 %) for 2,4-dichlorophenol degradation as compared to pristine CN-sample. Combined photoluminescence, transient/single wavelength photocurrent, photoelectrochemical, and coumarin fluorescence spectroscopy demonstrate that 4CdSe/P-CN nanocomposite exhibit enhanced charge separation efficiency which is responsible for improved visible light catalytic activities. Our work thus provide a new strategy to design low-cost and sustainable photocatalysis with wide visible-light activity for practical overall water splitting and CO2 reduction applications.

Journal ArticleDOI
TL;DR: Electrochemically-inert ligands are reported as a general material-design strategy for realizing high-performance LEDs based on quantum dots for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes.
Abstract: Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T95 > 3800 h at 1000 cd m−2) and blue-emitting light-emitting-diodes (T50 > 10,000 h at 100 cd m−2). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices. New design principles for bridging the photoluminescence and electroluminescence of colloidal quantum dots are needed. In this work, the authors report electrochemically-inert ligands as a general material-design strategy for realizing high-performance LEDs based on quantum dots.

Journal ArticleDOI
TL;DR: In the effort to develop disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing and transmitting quantum information as mentioned in this paper, such as a universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor hybrid quantum systems.
Abstract: In the effort to develop disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing and transmitting quantum information. These devices leverage the special properties of holes in germanium, such as their inherently strong spin–orbit coupling and their ability to host superconducting pairing correlations. In this Review, we start by introducing the physics of holes in low-dimensional germanium structures, providing key insights from a theoretical perspective. We then examine the materials-science progress underpinning germanium-based planar heterostructures and nanowires. We go on to review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor–semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising avenues towards scalable quantum information processing in germanium-based systems. Germanium is a promising material to build quantum components for scalable quantum information processing. This Review examines progress in materials science and devices that has enabled key building blocks for germanium quantum technology, such as hole-spin qubits and superconductor–semiconductor hybrids.

Journal ArticleDOI
TL;DR: It is demonstrated that the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PqD) superstructure prepared by growing PQDs directly from a graphene lattice synchronizes efficient charge generation and transport on a single platform.
Abstract: Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 108 AW–1 and specific detectivity of 4.72 × 1015 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.


Journal ArticleDOI
09 Apr 2020-Nature
TL;DR: In this article, the authors demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single 171Yb3+ ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal.
Abstract: Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication1,2. Building quantum networks requires scalable quantum light–matter interfaces1 based on atoms3, ions4 or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide6–10, have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light–matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f–4f optical and spin transitions suited to quantum storage and transduction11–15, but only recently have single rare-earth ions been isolated16,17 and coupled to nanocavities18,19. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single 171Yb3+ ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet. Single ytterbium ion qubits in nanophotonic cavities have long coherence times and can be optically read out in a single shot, establishing them as excellent candidates for optical quantum networks.

Journal ArticleDOI
29 Jan 2020
TL;DR: In this paper, a review of recent advances in hybrid super-semi quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots, is presented.
Abstract: Light–matter interactions at the single-particle level have generally been explored in the context of atomic, molecular and optical physics. Recent advances motivated by quantum information science have made it possible to explore coherent interactions between photons trapped in superconducting cavities and superconducting qubits. In the context of quantum information, the study of coherent interactions between single charges and spins in semiconductors and photons trapped in superconducting cavities is very relevant, as the spin degree of freedom has a coherence time that can potentially exceed that of superconducting qubits, and cavity photons can serve to effectively overcome the limitation of short-range interaction inherent to spin qubits. Here, we review recent advances in hybrid ‘super–semi’ quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots. We first present an overview of the physics governing the behaviour of superconducting cavities, semiconductor quantum dots and their modes of interaction. We then survey experimental progress in the field, focusing on recent demonstrations of cavity quantum electrodynamics in the strong-coupling regime with a single charge and a single spin. Finally, we broadly discuss promising avenues of future research, including the use of super–semi systems to investigate phenomena in condensed-matter physics. The integration of gate-defined quantum dots with superconducting resonators results in a hybrid architecture that holds promise for quantum information processing. This Review discusses recent experimental results in the field, including the achievement of strong coupling between single microwave photons and the charge and spin degrees of freedom, and examines the underlying physics.

Journal ArticleDOI
TL;DR: Lead halide perovskite quantum dots (LHP QDs) exhibit great potential in the backlighting display of light-emitting diode applications as mentioned in this paper, and they exhibit high brightness, low cost, a...
Abstract: Lead halide perovskite quantum dots (LHP QDs) exhibit great potential in the backlighting display of light-emitting diode applications. Light-emitting backlighting with high brightness, low cost, a...

Journal ArticleDOI
TL;DR: Recently, substantial progress has been made in perovskite-based light-emitting devices (LEDs) with near-infrared, red, green, and blue emissions.
Abstract: Recently, substantial progress has been made in perovskite-based light-emitting devices (LEDs) with near-infrared, red, green, and blue emissions. However, short-wavelength perovskite LEDs targeted...

Journal ArticleDOI
03 Jun 2020-Nature
TL;DR: In this paper, a platform for multidimensional nanoscale imaging and spectroscopy of free-electron interactions with photonic cavities was developed for low-dose, ultrafast electron microscopy of soft matter or other beam-sensitive materials.
Abstract: Advances in the research of interactions between ultrafast free electrons and light have introduced a previously unknown kind of quantum matter, quantum free-electron wavepackets1-5. So far, studies of the interactions of cavity-confined light with quantum matter have focused on bound electron systems, such as atoms, quantum dots and quantum circuits, which are considerably limited by their fixed energy states, spectral range and selection rules. By contrast, quantum free-electron wavepackets have no such limits, but so far no experiment has shown the influence of a photonic cavity on quantum free-electron wavepackets. Here we develop a platform for multidimensional nanoscale imaging and spectroscopy of free-electron interactions with photonic cavities. We directly measure the cavity-photon lifetime via a coherent free-electron probe and observe an enhancement of more than an order of magnitude in the interaction strength relative to previous experiments of electron-photon interactions. Our free-electron probe resolves the spatiotemporal and energy-momentum information of the interaction. The quantum nature of the electrons is verified by spatially mapping Rabi oscillations of the electron spectrum. The interactions between free electrons and cavity photons could enable low-dose, ultrafast electron microscopy of soft matter or other beam-sensitive materials. Such interactions may also open paths towards using free electrons for quantum information processing and quantum sensing. Future studies could achieve free-electron strong coupling6,7, photon quantum state synthesis8 and quantum nonlinear phenomena such as cavity electro-optomechanics9.

Journal ArticleDOI
TL;DR: In this paper, an electron-rich cesium-ion containing methyl acetate solution was used to enhance the performance of perovskite quantum dots (QDs) in solar cells.
Abstract: All-inorganic α-CsPbI3 perovskite quantum dots (QDs) are attracting great interest as solar cell absorbers due to their appealing light harvesting properties and enhanced stability due to the absence of volatile organic constituents. Moreover, ex situ synthesized QDs significantly reduce the variability of the perovskite layer deposition process. However, the incorporation of α-CsPbI3 QDs into mesoporous TiO2 (m-TiO2) is highly challenging, but these constitute the best performing electron transport materials in state-of-the-art perovskite solar cells. Herein, the m-TiO2 surface is engineered using an electron-rich cesium-ion containing methyl acetate solution. As one effect of this treatment, the solid-liquid interfacial tension at the TiO2 surface is reduced and the wettability is improved, facilitating the migration of the QDs into m-TiO2. As a second effect, Cs+ ions passivate the QD surface and promote the charge transfer at the m-TiO2/QD interface, leading to an enhancement of the electron injection rate by a factor of 3. In combination with an ethanol-environment smoothing route that significantly reduces the surface roughness of the m-TiO2/QD layer, optimized devices exhibit highly reproducible power conversion efficiencies exceeding 13%. The best cell with an efficiency of 14.32% (reverse scan) reaches a short-circuit current density of 17.77 mA cm-2, which is an outstanding value for QD-based perovskite solar cells.

Journal ArticleDOI
01 Jan 2020
TL;DR: In this article, the necessary theoretical foundations for the most important microwave-to-optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed.
Abstract: Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed.