scispace - formally typeset
Search or ask a question
Topic

Quantum error correction

About: Quantum error correction is a research topic. Over the lifetime, 10210 publications have been published within this topic receiving 487571 citations. The topic is also known as: QEC.


Papers
More filters
Book
01 Jan 2000
TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Abstract: Part I Fundamental Concepts: 1 Introduction and overview 2 Introduction to quantum mechanics 3 Introduction to computer science Part II Quantum Computation: 4 Quantum circuits 5 The quantum Fourier transform and its application 6 Quantum search algorithms 7 Quantum computers: physical realization Part III Quantum Information: 8 Quantum noise and quantum operations 9 Distance measures for quantum information 10 Quantum error-correction 11 Entropy and information 12 Quantum information theory Appendices References Index

25,929 citations

Journal ArticleDOI
TL;DR: In this paper, a universal set of one-and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots is proposed, and the desired operations are effected by the gating of the tunneling barrier between neighboring dots.
Abstract: We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium spin dynamics are proposed.

5,801 citations

Journal ArticleDOI
04 Jan 2001-Nature
TL;DR: It is shown that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors and are robust against errors from photon loss and detector inefficiency.
Abstract: Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

5,236 citations

Journal ArticleDOI
TL;DR: A protocol for coin-tossing by exchange of quantum messages is presented, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.

5,126 citations

Journal ArticleDOI
TL;DR: A two-dimensional quantum system with anyonic excitations can be considered as a quantum computer Unitary transformations can be performed by moving the excitations around each other Unitary transformation can be done by joining excitations in pairs and observing the result of fusion.

4,920 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum computer
30K papers, 907.2K citations
96% related
Quantum entanglement
39.5K papers, 1M citations
95% related
Open quantum system
20.4K papers, 924.6K citations
94% related
Quantum
60K papers, 1.2M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023174
2022378
2021284
2020253
2019208
2018166