scispace - formally typeset
Search or ask a question

Showing papers on "Quantum error correction published in 2022"


Journal ArticleDOI
TL;DR: In this article , a spin-based quantum processor in silicon with single qubit and two qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography, is presented.
Abstract: Abstract High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur 1 . The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code 2,3 . Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology 4 . Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm 5 . Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.

192 citations


Journal ArticleDOI
TL;DR: In this paper , a spin-based quantum processor in silicon with single qubit and two qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography, is presented.
Abstract: Abstract High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur 1 . The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code 2,3 . Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology 4 . Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm 5 . Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.

130 citations


Journal ArticleDOI
Jaroslav Bílek1
TL;DR: In this article , the authors used 17 physical qubits in a superconducting circuit to encode quantum information in a distance-three logical qubit and demonstrated the preservation of four cardinal states of the qubit.
Abstract: Quantum computers hold the promise of solving computational problems that are intractable using conventional methods1. For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy2. Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors3-6. Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments7-9. In an error-correction cycle taking only 1.1 μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps10, support our understanding that fault-tolerant quantum computation will be practically realizable.

81 citations


Journal ArticleDOI
TL;DR: In this paper , a probabilistic error cancellation (PE) technique is used to learn a sparse noise model that is able to capture correlated noise and scales to large quantum devices.
Abstract: Noise in quantum computers can result in biased estimates of physical observables. Accurate bias-free estimates can be obtained using probabilistic error cancellation, an error-mitigation technique that effectively inverts well-characterized noise channels. Learning correlated noise channels in large quantum circuits, however, has been a major challenge and has severely hampered experimental realizations. Our work presents a practical protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices. These advances allow us to demonstrate probabilistic error cancellation on a superconducting quantum processor, thereby providing a way to measure noise-free observables at larger circuit volumes. Probabilistic error cancellation could improve the performance of quantum computers without the prohibitive overhead of fault-tolerant error correction. The method has now been demonstrated on a device with 20 qubits.

69 citations


Journal ArticleDOI
TL;DR: In this article , the authors demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits.
Abstract: Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays1. Combined with the strong entangling interactions provided by Rydberg states2-4, all the necessary characteristics for quantum computation are available. Here we demonstrate several quantum algorithms on a programmable gate-model neutral-atom quantum computer in an architecture based on individual addressing of single atoms with tightly focused optical beams scanned across a two-dimensional array of qubits. Preparation of entangled Greenberger-Horne-Zeilinger (GHZ) states5 with up to six qubits, quantum phase estimation for a chemistry problem6 and the quantum approximate optimization algorithm (QAOA)7 for the maximum cut (MaxCut) graph problem are demonstrated. These results highlight the emergent capability of neutral-atom qubit arrays for universal, programmable quantum computation, as well as preparation of non-classical states of use for quantum-enhanced sensing.

68 citations


Journal ArticleDOI
TL;DR: In this paper , an error-correcting surface code, the distance-3 surface code which consists of 17 qubits, was implemented on the Zuchongzhi 2.1 superconducting quantum processor.
Abstract: Quantum error correction is a critical technique for transitioning from noisy intermediate-scale quantum (NISQ) devices to fully fledged quantum computers. The surface code, which has a high threshold error rate, is the leading quantum error correction code for two-dimensional grid architecture. So far, the repeated error correction capability of the surface code has not been realized experimentally. Here, we experimentally implement an error-correcting surface code, the distance-3 surface code which consists of 17 qubits, on the \textit{Zuchongzhi} 2.1 superconducting quantum processor. By executing several consecutive error correction cycles, the logical error can be significantly reduced after applying corrections, achieving the repeated error correction of surface code for the first time. This experiment represents a fully functional instance of an error-correcting surface code, providing a key step on the path towards scalable fault-tolerant quantum computing.

47 citations


Journal ArticleDOI
TL;DR: In this article , a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer is demonstrated, where the absence or presence of dangerous errors is heralded by the use of auxiliary flag qubits.
Abstract: Quantum computers can be protected from noise by encoding the logical quantum information redundantly into multiple qubits using error-correcting codes1,2. When manipulating the logical quantum states, it is imperative that errors caused by imperfect operations do not spread uncontrollably through the quantum register. This requires that all operations on the quantum register obey a fault-tolerant circuit design3-5, which, in general, increases the complexity of the implementation. Here we demonstrate a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer. In particular, we make use of the recently introduced paradigm of flag fault tolerance, where the absence or presence of dangerous errors is heralded by the use of auxiliary flag qubits6-10. We perform a logical two-qubit controlled-NOT gate between two instances of the seven-qubit colour code11,12, and fault-tolerantly prepare a logical magic state8,13. We then realize a fault-tolerant logical T gate by injecting the magic state by teleportation from one logical qubit onto the other14. We observe the hallmark feature of fault tolerance-a superior performance compared with a non-fault-tolerant implementation. In combination with recently demonstrated repeated quantum error-correction cycles15,16, these results provide a route towards error-corrected universal quantum computation.

45 citations


Journal ArticleDOI
TL;DR: In this paper , the authors demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond and demonstrate flagged stabilizer measurements with real-time processing of the outcomes.
Abstract: Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3-8, elementary quantum algorithms8-11 and non-fault-tolerant error correction12-14. Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations15-18. Overcoming imperfections in this way remains an important outstanding challenge for quantum science15,19-27. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits28-30. We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins.

42 citations


Journal ArticleDOI
TL;DR: In this article , the authors explore the purification transition with random quantum circuits implemented on a trapped-ion quantum computer and find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge.
Abstract: Many-body open quantum systems balance internal dynamics against decoherence and measurements induced by interactions with an environment1,2. Quantum circuits composed of random unitary gates with interspersed projective measurements represent a minimal model to study the balance between unitary dynamics and measurement processes3–5. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerant threshold6. Here we explore this purification transition with random quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase, where the system is rapidly projected to a pure state conditioned on the measurement outcomes, and the mixed or coding phase, where the initial state becomes partially encoded into a quantum error correcting codespace that keeps the memory of initial conditions for long times6,7. We find experimental evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition emerge. Many-body open quantum systems are predicted to undergo a phase transition towards a pure state through frequent projective measurements. The phases separated by this transition have now been observed with random circuits on a trapped-ion computer.

40 citations



Journal ArticleDOI
TL;DR: In this article , the authors integrate quantum error correction and quantum error mitigation into an efficient FTQC architecture that effectively increases the code distance and $T$-gate count at the cost of constant sampling overheads in a wide range of quantum computing regimes.
Abstract: In the early years of fault-tolerant quantum computing (FTQC), it is expected that the available code distance and the number of magic states will be restricted due to the limited scalability of quantum devices and the insufficient computational power of classical decoding units. Here, we integrate quantum error correction and quantum error mitigation into an efficient FTQC architecture that effectively increases the code distance and $T$-gate count at the cost of constant sampling overheads in a wide range of quantum computing regimes. For example, while we need $10^4$ to $10^{10}$ logical operations for demonstrating quantum advantages from optimistic and pessimistic points of view, we show that we can reduce the required number of physical qubits by $80\%$ and $45\%$ in each regime. From another perspective, when the achievable code distance is up to about 11, our scheme allows executing $10^3$ times more logical operations. This scheme will dramatically alleviate the required computational overheads and hasten the arrival of the FTQC era.

Journal ArticleDOI
TL;DR: In this article , a fully stabilized and error-corrected logical qubit whose quantum coherence is substantially longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of 2.27 ± 0.07.
Abstract: The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process1-7 faced the generation of an excessive number of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. Here we answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is substantially longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 ± 0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.

Journal ArticleDOI
TL;DR: In this article , a three-qubit phase-correcting code in silicon is presented, in which an encoded three qubit state is protected against any phase-flip error on one of the three qubits.
Abstract: Future large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation1,2. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers3-5. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems6-8. However, the demonstration of QEC, which requires three or more coupled qubits1, and involves a three-qubit gate9-11 or measurement-based feedback, remains an open challenge. Here we demonstrate a three-qubit phase-correcting code in silicon, in which an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors owing to one-qubit phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. These results show successful implementation of QEC and the potential of a silicon-based platform for large-scale quantum computing.

Journal ArticleDOI
TL;DR: In this article , a review of the application of dissipation engineering to quantum error correction, quantum sensing and quantum simulation is presented, highlighting the role of such tools in quantum simulation and error correction.
Abstract: Quantum information processing relies on the precise control of non-classical states in the presence of many uncontrolled environmental degrees of freedom. The interactions between the relevant degrees of freedom and the environment are often viewed as detrimental, as they dissipate energy and decohere quantum states. Nonetheless, when controlled, dissipation is an essential tool for manipulating quantum information: dissipation engineering enables quantum measurement, quantum-state preparation and quantum-state stabilization. The advances in quantum technologies, marked by improvements of characteristic coherence times and extensible architectures for quantum control, have coincided with the development of such dissipation engineering tools that interface quantum and classical degrees of freedom. This Review presents dissipation as a fundamental aspect of the measurement and control of quantum devices, and highlights the role of dissipation engineering in quantum error correction and quantum simulation. Controlled dissipation can be used to protect quantum information, control dynamics and enforce constraints. This Review explains the basic principles and overviews the applications of dissipation engineering to quantum error correction, quantum sensing and quantum simulation.

Journal ArticleDOI
TL;DR: In this paper , the authors perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice, encoding a logical qubit with distance three and performing several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry.
Abstract: Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice. We encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements that allow for the correction of any single fault in the circuitry. Using real-time feedback, we reset syndrome and flag qubits conditionally after each syndrome extraction cycle. We report decoder dependent logical error, with average logical error per syndrome measurement in Z(X)-basis of ~0.040 (~0.088) and ~0.037 (~0.087) for matching and maximum likelihood decoders, respectively, on leakage post-selected data.

Journal ArticleDOI
TL;DR: In this paper , the authors demonstrate a QEC procedure in a circuit quantum electrodynamics architecture, where the logical qubit is binomially encoded in photon-number states of a microwave cavity, dispersively coupled to an auxiliary superconducting qubit.
Abstract: Abstract Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time 1 . In most QEC codes 2–8 , a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios 9–17 . However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture 18 , where the logical qubit is binomially encoded in photon-number states of a microwave cavity 8 , dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation 19 .

Journal ArticleDOI
TL;DR: In this paper , a derivative-based leakage-suppression technique was applied to overcome nonadiabatic errors, so that fast BP gates on Kerr-cat qubits with improved gate fidelity while maintaining high noise bias.
Abstract: Stabilized cat codes can provide a biased noise channel with a set of bias-preserving (BP) gates, which can significantly reduce the resource overhead for fault-tolerant quantum computing. All existing schemes of BP gates, however, require adiabatic quantum evolution, with performance limited by excitation loss and nonadiabatic errors during the adiabatic gates. In this paper, we apply a derivative-based leakage-suppression technique to overcome nonadiabatic errors, so that we can implement fast BP gates on Kerr-cat qubits with improved gate fidelity while maintaining high noise bias. When applied to concatenated quantum error correction, the fast BP gates not only can improve the logical error rate but also can reduce resource overhead, which enables more efficient implementation of fault-tolerant quantum computing.

Journal ArticleDOI
TL;DR: In this paper , the state of a quantum memory was preserved with the additional use of flagged error events, extracted using fast, midcircuit measurements and resets of the physical qubits.
Abstract: Arbitrarily long quantum computations require quantum memories that can be repeatedly measured without being corrupted. Here, we preserve the state of a quantum memory, notably with the additional use of flagged error events. All error events were extracted using fast, midcircuit measurements and resets of the physical qubits. Among the error decoders we considered, we introduce a perfect matching decoder that was calibrated from measurements containing up to size-four correlated events. To compare the decoders, we used a partial postselection scheme shown to retain ten times more data than full postselection. We observed logical errors per round of 2.2±0.1×10^{-2} (decoded without postselection) and 5.1±0.7×10^{-4} (full postselection), which was less than the physical measurement error of 7×10^{-3} and therefore surpasses a pseudothreshold for repeated logical measurements.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a method of error mitigation by purifying the quantum state without qubit overhead or requiring only one ancilla qubit, which can effectively generate a purified state with increased fidelity.
Abstract: Quantum error mitigation is essential for many computing tasks on the noisy quantum computer with a limited number of qubits. In this paper, we propose a practical protocol of error mitigation by virtually purifying the quantum state without qubit overhead or requiring only one ancilla qubit. In dual-state purification, we effectively generate a purified state with increased fidelity using the erroneous state and its dual state, respectively, prepared with the noisy quantum circuit and the dual map of its inverse circuit. Combined with tomography purification, we can make sure that the final estimate of an observable is obtained from a pure state. While the absolute error increases, the numerical result, based on a depolarizing model, suggests that our protocol reduces the error compared to the case without the protocol by a rescaling factor decreasing with the qubit number and circuit depth; i.e., the relative performance of purification is better for larger circuits. On a cloud quantum computer, we successfully demonstrate the reduced error with a quantum variational eigensolver circuit.

Journal ArticleDOI
TL;DR: In this paper , a generalized quantum subspace expansion method was proposed to suppress unwanted errors in quantum computers, which can handle stochastic, coherent, and algorithmic errors in the quantum computers.
Abstract: One of the major challenges for erroneous quantum computers is undoubtedly the control over the effect of noise. Considering the rapid growth of available quantum resources that are not fully fault-tolerant, it is crucial to develop practical hardware-friendly quantum error mitigation (QEM) techniques to suppress unwanted errors. Here, we propose a novel generalized quantum subspace expansion method which can handle stochastic, coherent, and algorithmic errors in quantum computers. By fully exploiting the substantially extended subspace, we can efficiently mitigate the noise present in the spectra of a given Hamiltonian, without relying on any information of noise. The performance of our method is discussed under two highly practical setups: the quantum subspaces are mainly spanned by powers of the noisy state $\rho^m$ and a set of error-boosted states, respectively. We numerically demonstrate in both situations that we can suppress errors by orders of magnitude, and show that out protocol inherits the advantages of previous error-agnostic QEM techniques as well as overcoming their drawbacks.

Journal ArticleDOI
24 Aug 2022-Science
TL;DR: Stajic et al. as discussed by the authors used an array of cesium spectator qubits to correct correlated phase errors on a data qubit, which was suppressed by combining in-sequence readout, data processing and feedforward operations.
Abstract: Scaling up invariably error-prone quantum processors is a formidable challenge. Although quantum error correction ultimately promises fault-tolerant operation, the required qubit overhead and error thresholds are daunting. In a complementary proposal, colocated, auxiliary “spectator” qubits act as in situ probes of noise and enable real-time, coherent corrections of data qubit errors. We used an array of cesium spectator qubits to correct correlated phase errors on an array of rubidium data qubits. By combining in-sequence readout, data processing, and feedforward operations, these correlated errors were suppressed within the execution of the quantum circuit. The protocol is broadly applicable to quantum information platforms and establishes key tools for scaling neutral-atom quantum processors: mid-circuit readout of atom arrays, real-time processing and feedforward, and coherent mid-circuit reloading of atomic qubits. Description Editor’s summary Qubits, the quantum information version of bits, are prone to decoherence as a consequence of their interaction with the environment. One way to manage decoherence is to correct for its effects. Recently, a scheme was proposed in which so-called “spectator” qubits are embedded in the system and used to read out the accumulated noise. This information is then used in real time to counter the decoherence of the “data” qubits that are performing the computation. Singh et al. implemented this proposal experimentally in a two-species system of neutral atoms placed in optical tweezers. The researchers demonstrated the success of the procedure by mitigating the effects of injected magnetic field noise. —Jelena Stajic An interspersed array of Cs and Rb atoms was used to implement a protocol for the correction of correlated errors.

Journal ArticleDOI
TL;DR: In this paper , a quantum convolutional neural network (QCNN) was used to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter.
Abstract: Abstract Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

Journal ArticleDOI
TL;DR: In this article , the authors determine speed limits on the informational measures, namely the von Neumann entropy, maximal information, and coherence of quantum systems evolving under dynamical processes, to determine the fundamental limitations on the evolution time required by the quantum systems for the changes in their informational measures.
Abstract: The quantum speed limit indicates the maximal evolution speed of the quantum system. In this work, we determine speed limits on the informational measures, namely the von Neumann entropy, maximal information, and coherence of quantum systems evolving under dynamical processes. These speed limits ascertain the fundamental limitations on the evolution time required by the quantum systems for the changes in their informational measures. Erasing of quantum information to reset the memory for future use is crucial for quantum computing devices. We use the speed limit on the maximal information to obtain the minimum time required to erase the information of quantum systems via some quantum processes of interest.

Journal ArticleDOI
01 Jan 2022
TL;DR: In this article, a mixture of two ultracold atomic species is proposed as a platform for universal quantum computation with long-range entangling gates, while providing a natural candidate for quantum error-correction.
Abstract: Quantum information platforms made great progress in the control of many-body entanglement and the implementation of quantum error correction, but it remains a challenge to realize both in the same setup. Here, we propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates, while providing a natural candidate for quantum error-correction. In this proposed setup, one atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information. The second atomic species yields phononic excitations, which are used to entangle collective spins. Finally, we discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins, opening up the possibility to universal fault-tolerant quantum computation in ultracold atom systems.

Journal ArticleDOI
TL;DR: In this paper , the authors apply a recently developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the quantum Zeno effect (QZE).
Abstract: In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened. However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys. Rev. Lett. 109, 233601 (2012)]. In this work, we apply a recently developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to $n=7$ qubits, we demonstrate that the precision has been improved by a factor of ${n}^{1/4}$, which is consistent with the theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental verification of various quantum metrology schemes.

Journal ArticleDOI
TL;DR: In this paper , a linear-optical quantum logic gate with truth table fidelity of 99.84(3)% and entangling gate fidelity of 0.69(4)% post-selected upon the detection of photons is presented.
Abstract: Compared to other types of qubits, photon is one of a kind due to its unparalleled advantages in long-distance quantum information exchange. Therefore, photon is a natural candidate for building a large-scale, modular optical quantum computer operating at room temperature. However, low-fidelity two-photon quantum logic gates and their probabilistic nature result in a large resource overhead for fault tolerant quantum computation. While the probabilistic problem can, in principle, be solved by employing multiplexing and error correction, the fidelity of linear-optical quantum logic gate is limited by the imperfections of single photons. Here, we report the demonstration of a linear-optical quantum logic gate with truth table fidelity of 99.84(3)% and entangling gate fidelity of 99.69(4)% post-selected upon the detection of photons. The achieved high gate fidelities are made possible by our near-optimal Rydberg single-photon source. Our work paves the way for scalable photonic quantum applications based on near-optimal single-photon qubits and photon-photon gates.

Journal ArticleDOI
TL;DR: In this paper , a quantum error correction code can be implemented using a four-qubit array in germanium, using a resonant SWAP gate and combining controlled-Z and controlled-S −1 gates.
Abstract: Abstract The fault-tolerant operation of logical qubits is an important requirement for realizing a universal quantum computer. Spin qubits based on quantum dots have great potential to be scaled to large numbers because of their compatibility with standard semiconductor manufacturing. Here, we show that a quantum error correction code can be implemented using a four-qubit array in germanium. We demonstrate a resonant SWAP gate and by combining controlled-Z and controlled-S −1 gates we construct a Toffoli-like three-qubit gate. We execute a two-qubit phase flip code and find that we can preserve the state of the data qubit by applying a refocusing pulse to the ancilla qubit. In addition, we implement a phase flip code on three qubits, making use of a Toffoli-like gate for the final correction step. Both the quality and quantity of the qubits will require significant improvement to achieve fault-tolerance. However, the capability to implement quantum error correction codes enables co-design development of quantum hardware and software, where codes tailored to the properties of spin qubits and advances in fabrication and operation can now come together to advance semiconductor quantum technology.

Journal ArticleDOI
TL;DR: In this article , a spin qudit is used to encode the protected unit, and is tailored to fight pure dephasing, which can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term.
Abstract: Thanks to the large number of levels which can be coherently manipulated, molecular spin systems constitute a very promising platform for quantum computing. Indeed, they can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term. We consider a recent proposal, which exploits a spin qudit to encode the protected unit, and is tailored to fight pure dephasing. Here we compare the implementation of this code on different molecules, in which the qudit is provided by either an electronic or a nuclear spin (S, I > 1), coupled to a spin-1/2 electronic ancilla for error detection. By thorough numerical simulations we show that a significant gain in the effective phase memory time can be achieved. This is further enhanced by exploiting pulse-shaping techniques to reduce the leakage and/or the impact of decoherence during correction. Moreover, we simulate the implementation of single-qubit operations on the encoded states.

Journal ArticleDOI
TL;DR: In this article , the authors derive fundamental bounds concerning how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead, and show that the sampling overhead that ensures a certain computational accuracy for mitigating local depolarizing noise in layered circuits scales exponentially with the circuit depth.
Abstract: The inevitable accumulation of errors in near-future quantum devices represents a key obstacle in delivering practical quantum advantages, motivating the development of various quantum error-mitigation methods. Here, we derive fundamental bounds concerning how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead. Our bounds place universal performance limits on a general error-mitigation protocol class. We use them to show (1) that the sampling overhead that ensures a certain computational accuracy for mitigating local depolarizing noise in layered circuits scales exponentially with the circuit depth for general error-mitigation protocols and (2) the optimality of probabilistic error cancellation among a wide class of strategies in mitigating the local dephasing noise on an arbitrary number of qubits. Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.

Journal ArticleDOI
07 Apr 2022-Quantum
TL;DR: VarQEC, a noise-resilient variational quantum algorithm to search for quantum codes with a hardware-efficient encoding circuit, sheds new light on the understanding of QECC in general, which may also help to enhance near-term device performance with channel-adaptive error-correcting codes.
Abstract: Quantum error correction is believed to be a necessity for large-scale fault-tolerant quantum computation. In the past two decades, various constructions of quantum error-correcting codes (QECCs) have been developed, leading to many good code families. However, the majority of these codes are not suitable for near-term quantum devices. Here we present VarQEC, a noise-resilient variational quantum algorithm to search for quantum codes with a hardware-efficient encoding circuit. The cost functions are inspired by the most general and fundamental requirements of a QECC, the Knill-Laflamme conditions. Given the target noise channel (or the target code parameters) and the hardware connectivity graph, we optimize a shallow variational quantum circuit to prepare the basis states of an eligible code. In principle, VarQEC can find quantum codes for any error model, whether additive or non-additive, degenerate or non-degenerate, pure or impure. We have verified its effectiveness by (re)discovering some symmetric and asymmetric codes, e.g., ((n,2n−6,3))2 for n from 7 to 14. We also found new ((6,2,3))2 and ((7,2,3))2 codes that are not equivalent to any stabilizer code, and extensive numerical evidence with VarQEC suggests that a ((7,3,3))2 code does not exist. Furthermore, we found many new channel-adaptive codes for error models involving nearest-neighbor correlated errors. Our work sheds new light on the understanding of QECC in general, which may also help to enhance near-term device performance with channel-adaptive error-correcting codes.