scispace - formally typeset
Search or ask a question
Topic

Quantum limit

About: Quantum limit is a research topic. Over the lifetime, 4090 publications have been published within this topic receiving 134637 citations.


Papers
More filters
Journal ArticleDOI
24 Apr 2008-Nature
TL;DR: In this article, the authors used incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES) to locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands.
Abstract: When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may incorporate 'light-like' bulk carriers and spin-textured surface currents.

2,739 citations

Journal ArticleDOI
19 Nov 2004-Science
TL;DR: This work has shown that conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.
Abstract: Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits on the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits and can be beaten using quantum strategies that employ “quantum tricks” such as squeezing and entanglement.

2,421 citations

Journal ArticleDOI
TL;DR: The quantum mechanical structure which underlies the generalized uncertainty relation which quantum theoretically describes the minimal length as a minimal uncertainty in position measurements is studied.
Abstract: The existence of a minimal observable length has long been suggested in quantum gravity as well as in string theory. In this context a generalized uncertainty relation has been derived which quantum theoretically describes the minimal length as a minimal uncertainty in position measurements. Here we study in full detail the quantum mechanical structure which underlies this uncertainty relation. DAMTP/94-105, hep-th/9412167, and Phys.Rev.D52:1108 (1995)

1,828 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit.
Abstract: Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit.

1,600 citations

Journal ArticleDOI
TL;DR: In this paper, a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification is given, and the basics of weak continuous measurements are described.
Abstract: The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and atomic, molecular, optical--quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, the basics of weak continuous measurements are described. Particular attention is given to the treatment of the standard quantum limit on linear amplifiers and position detectors within a general linear-response framework. This approach is shown how it relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics and its application to the case of electrical circuits is illustrated, including mesoscopic detectors and resonant cavity detectors.

1,581 citations


Network Information
Related Topics (5)
Quantum
60K papers, 1.2M citations
93% related
Photon
48.9K papers, 1M citations
89% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Ground state
70K papers, 1.5M citations
87% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022166
2021134
2020179
2019126
2018125