scispace - formally typeset
Search or ask a question
Topic

Quantum state

About: Quantum state is a research topic. Over the lifetime, 21753 publications have been published within this topic receiving 552000 citations.


Papers
More filters
Book
29 Aug 2002
TL;DR: Probability in classical and quantum physics has been studied in this article, where classical probability theory and stochastic processes have been applied to quantum optical systems and non-Markovian dynamics in physical systems.
Abstract: PREFACE ACKNOWLEDGEMENTS PART 1: PROBABILITY IN CLASSICAL AND QUANTUM MECHANICS 1. Classical probability theory and stochastic processes 2. Quantum Probability PART 2: DENSITY MATRIX THEORY 3. Quantum Master Equations 4. Decoherence PART 3: STOCHASTIC PROCESSES IN HILBERT SPACE 5. Probability distributions on Hilbert space 6. Stochastic dynamics in Hilbert space 7. The stochastic simulation method 8. Applications to quantum optical systems PART 4: NON-MARKOVIAN QUANTUM PROCESSES 9. Projection operator techniques 10. Non-Markovian dynamics in physical systems PART 5: RELATIVISTIC QUANTUM PROCESSES 11. Measurements in relativistic quantum mechanics 12. Open quantum electrodynamics

6,325 citations

Journal ArticleDOI
TL;DR: In this article, the photon statistics of arbitrary fields in fully quantum-mechanical terms are discussed, and a general method of representing the density operator for the field is discussed as well as a simple formulation of a superposition law for photon fields.
Abstract: Methods are developed for discussing the photon statistics of arbitrary fields in fully quantum-mechanical terms. In order to keep the classical limit of quantum electrodynamics plainly in view, extensive use is made of the coherent states of the field. These states, which reduce the field correlation functions to factorized forms, are shown to offer a convenient basis for the description of fields of all types. Although they are not orthogonal to one another, the coherent states form a complete set. It is shown that any quantum state of the field may be expanded in terms of them in a unique way. Expansions are also developed for arbitrary operators in terms of products of the coherent state vectors. These expansions are discussed as a general method of representing the density operator for the field. A particular form is exhibited for the density operator which makes it possible to carry out many quantum-mechanical calculations by methods resembling those of classical theory. This representation permits clear insights into the essential distinction between the quantum and classical descriptions of the field. It leads, in addition, to a simple formulation of a superposition law for photon fields. Detailed discussions are given of the incoherent fields which are generated by superposing the outputs of many stationary sources. These fields are all shown to have intimately related properties, some of which have been known for the particular case of blackbody radiation.

5,372 citations

Journal ArticleDOI
28 Oct 1982-Nature
TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Abstract: If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon is guaranteed to have the same polarization as the original photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: in the case of a photon, one could determine its polarization by first producing a beam of identically polarized copies and then measuring the Stokes parameters1. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems.

4,544 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations

Journal ArticleDOI
TL;DR: Any classically correlated state can be modeled by a hidden-variable theory and hence satisfies all generalized Bell's inequalities and the converse of this statement is false.
Abstract: A state of a composite quantum system is called classically correlated if it can be approximated by convex combinations of product states, and Einstein-Podolsky-Rosen correlated otherwise. Any classically correlated state can be modeled by a hidden-variable theory and hence satisfies all generalized Bell's inequalities. It is shown by an explicit example that the converse of this statement is false.

3,524 citations


Network Information
Related Topics (5)
Quantum entanglement
39.5K papers, 1M citations
98% related
Quantum information
22.7K papers, 911.3K citations
97% related
Open quantum system
20.4K papers, 924.6K citations
97% related
Quantum
60K papers, 1.2M citations
96% related
Quantum computer
30K papers, 907.2K citations
95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023147
2022325
20211,837
20201,807
20191,737
20181,453