scispace - formally typeset
Search or ask a question
Topic

Quantum tunnelling

About: Quantum tunnelling is a research topic. Over the lifetime, 24431 publications have been published within this topic receiving 579635 citations. The topic is also known as: tunneling effect & tunnel effect.


Papers
More filters
Journal ArticleDOI
TL;DR: A new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene are described.
Abstract: The celebrated electronic properties of graphene(1,2) have opened the way for materials just one atom thick(3) to be used in the post-silicon electronic era(4). An important milestone was the creation of heterostructures based on graphene and other two-dimensional crystals, which can be assembled into three-dimensional stacks with atomic layer precision(5-7). Such layered structures have already demonstrated a range of fascinating physical phenomena(8-71), and have also been used in demonstrating a prototype field-effect tunnelling transistor(12), which is regarded to be a candidate for post-CMOS (complementary metal-oxide semiconductor) technology. The range of possible materials that could be incorporated into such stacks is very large. Indeed, there are many other materials with layers linked by weak van der Waals forces that can be exfoliated(3,13) and combined together to create novel highly tailored heterostructures. Here, we describe a new generation of field-effect vertical tunnelling transistors where two-dimensional tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or chemical vapour deposition-grown graphene. The combination of tunnelling (under the barrier) and thermionic (over the barrier) transport allows for unprecedented current modulation exceeding 1 x 10(6) at room temperature and very high ON current. These devices can also operate on transparent and flexible substrates.

1,617 citations

BookDOI
01 Jan 1992

1,611 citations

Journal ArticleDOI
TL;DR: In this paper, a method for finding free energy barriers for transitions in high-dimensional classical and quantum systems is presented and used to calculate the dissociative sticking probability of H2 on a metal surface within transition state theory (TST).
Abstract: A practical method for finding free energy barriers for transitions in high-dimensional classical and quantum systems is presented and used to calculate the dissociative sticking probability of H2 on a metal surface within transition state theory (TST). The reversible work involved in shifting the system confined to a hyperplane from the reactant region towards products is evaluated directly. Quantum mechanical degrees of freedom are included by using Feynman Path Integrals with the hyperplane constraint applied to the centroid of the cyclic paths. An optimal dividing surface for the rate estimated by TST is identified naturally in the course of the reversible work evaluation. The free energy barrier is determined relative to the reactant state directly, so an estimate of the transition rate can be obtained without requiring a solvable reference model for the transition state. The method has been applied to calculations of the sticking probability of a thermalized hydrogen gas on a Cu(110) surface. The two hydrogen atoms were included quantum mechanically, and over two hundred atoms in the Cu crystal where included classically. The activation energy for adsorption and desorption was determined and found to be significantly lowered by tunneling at low temperature. The calculated values agree quite well with experimental estimates. Dynamical corrections to the classical TST rate estimate were evaluated and found to be small.

1,572 citations

Journal ArticleDOI
12 Sep 1996-Nature
TL;DR: In this article, the results of low-temperature experiments on a single crystal composed of superparamagnetic manganese clusters (Mn12-ac) were reported, which clearly demonstrate the existence of quantum-mechanical tunnelling of the bulk magnetization.
Abstract: THE precise manner in which quantum-mechanical behaviour at the microscopic level underlies classical behaviour at the macroscopic level remains unclear, despite seventy years of theoretical investigation. Experimentally, the crossover between these regimes can be explored by looking for signatures of quantum-mechanical behaviour—such as tunneling—in macroscopic systems1. Magnetic systems (such as small grains, spin glasses and thin films) are often investigated in this way2–12 because transitions between different magnetic states can be closely monitored. But transitions between states can be induced by thermal fluctuations, as well as by tunnelling, and definitive identification of macroscopic tunnelling events in these complex systems is therefore difficult13. Here we report the results of low-temperature experiments on a single crystal composed of super-paramagnetic manganese clusters (Mn12-ac), which clearly demonstrate the existence of quantum-mechanical tunnelling of the bulk magnetization. In an applied magnetic field, the magnetization shows hysteresis loops with a distinct 'staircase' structure: the steps occur at values of the applied field where the energies of different collective spin states of the manganese clusters coincide. At these special values of the field, relaxation from one spin state to another is enhanced above the thermally activated rate by the action of resonant quantum-mechanical tunnelling. These observations corroborate the results of similar experiments performed recently on a system of oriented crystallites made from a powdered sample4.

1,542 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
88% related
Silicon
196K papers, 3M citations
87% related
Electron
111.1K papers, 2.1M citations
85% related
Thin film
275.5K papers, 4.5M citations
85% related
Amorphous solid
117K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,033
20222,158
2021522
2020563
2019606
2018614