scispace - formally typeset
Search or ask a question

Showing papers on "Quantum well published in 2014"


24 Apr 2014
TL;DR: In this article, the quantum spin Hall effect was observed in HgTe/(Hg,Cd)Te quantum wells with well width d 6.3 nanometers and the residual conductance was independent of sample width, indicating that it is caused by edge states.
Abstract: Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from n-type to p-type, passing through an insulating regime. For thin quantum wells with well width d 6.3 nanometers), the nominally insulating regime showed a plateau of residual conductance close to 2e(2)/h, where e is the electron charge and h is Planck's constant. The residual conductance was independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also independently determined from the magnetic field-induced insulator-to-metal transition. These observations provide experimental evidence of the quantum spin Hall effect.

2,958 citations


Journal Article
TL;DR: Two-dimensional tin films are QSH insulators with sizable bulk gaps of 0.3 eV, sufficiently large for practical applications at room temperature and effectively tuned by chemical functionalization and by external strain.
Abstract: The search for large-gap quantum spin Hall (QSH) insulators and effective approaches to tune QSH states is important for both fundamental and practical interests. Based on first-principles calculations we find two-dimensional tin films are QSH insulators with sizable bulk gaps of 0.3 eV, sufficiently large for practical applications at room temperature. These QSH states can be effectively tuned by chemical functionalization and by external strain. The mechanism for the QSH effect in this system is band inversion at the $\ensuremath{\Gamma}$ point, similar to the case of a HgTe quantum well. With surface doping of magnetic elements, the quantum anomalous Hall effect could also be realized.

817 citations


Journal ArticleDOI
TL;DR: Two-dimensional CdSe colloidal nanosheets combine the advantage of solution synthesis with the optoelectronic properties of epitaxial two-dimensional quantum wells and show that these colloidal quantum wells possess large exciton and biexciton binding energies, giving rise to stimulated emission from bIExcitons at room temperature.
Abstract: Solution-processed inorganic and organic materials have been pursued for more than a decade as low-threshold, high-gain lasing media, motivated in large part by their tunable optoelectronic properties and ease of synthesis and processing. Although both have demonstrated stimulated emission and lasing, they have not yet approached the continuous-wave pumping regime. Two-dimensional CdSe colloidal nanosheets combine the advantage of solution synthesis with the optoelectronic properties of epitaxial two-dimensional quantum wells. Here, we show that these colloidal quantum wells possess large exciton and biexciton binding energies of 132 meV and 30 meV, respectively, giving rise to stimulated emission from biexcitons at room temperature. Under femtosecond pulsed excitation, close-packed thin films yield an ultralow stimulated emission threshold of 6 μJ cm(-2), sufficient to achieve continuous-wave pumped stimulated emission, and lasing when these layers are embedded in surface-emitting microcavities.

421 citations


Journal ArticleDOI
TL;DR: In this article, a Ridge waveguide laser with P-modulation doping of active region improves T0 to the range of 100-200 K while maintaining low thresholds and high output powers.
Abstract: We demonstrate record performance 1.3 μm InAs quantum dot lasers grown on silicon by molecular beam epitaxy. Ridge waveguide lasers fabricated from the as-grown material achieve room temperature continuous wave thresholds as low as 16 mA, output powers exceeding 176 mW, and lasing up to 119 °C. P-modulation doping of the active region improves T0 to the range of 100–200 K while maintaining low thresholds and high output powers. Device yield is presented showing repeatable performance across different dies and wafers.

322 citations


Journal ArticleDOI
TL;DR: In this paper, a study using superconducting leads in contact with a quantum well reveals the presence of supercurrents along one-dimensional sample edges of a quantum spin Hall state.
Abstract: Majorana fermions, which are their own antiparticles, are expected to exist in topological superconductors. A study using superconducting leads in contact with a quantum well reveals the presence of supercurrents along one-dimensional sample edges of a quantum spin Hall state. These edge supercurrents are topological.

300 citations


Patent
20 Feb 2014
TL;DR: In this article, a method of fabricating a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n type contact layer, is provided.
Abstract: A method of fabricating a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer, is provided. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.

236 citations


Journal ArticleDOI
TL;DR: In this work, concepts of effective mass and quantum well are carefully investigated and their applicability to 2D HOPs is discussed, finding that for ultrathin layers, the effective-mass model fails and an alternative method is suggested in which 2DHOPs are treated as composite materials, and a first-principles approach to the calculation of band offsets.
Abstract: Layered hybrid organic perovskites (HOPs) structures are a class of low-cost two-dimensional materials that exhibit outstanding optical properties, related to dielectric and quantum confinement effects. Whereas modeling and understanding of quantum confinement are well developed for conventional semiconductors, such knowledge is still lacking for 2D HOPs. In this work, concepts of effective mass and quantum well are carefully investigated and their applicability to 2D HOPs is discussed. For ultrathin layers, the effective-mass model fails. Absence of superlattice coupling and importance of non-parabolicity effects prevents the use of simple empirical models based on effective masses and envelope function approximations. An alternative method is suggested in which 2D HOPs are treated as composite materials, and a first-principles approach to the calculation of band offsets is introduced. These findings might also be relevant for other classes of layered 2D functional materials.

219 citations


Journal ArticleDOI
TL;DR: In this paper, the optical properties of the InGaN-based red LED grown on a c-plane sapphire substrate were reported and the light output power and external quantum efficiency at a dc current of 20 mA were 1.1 mW and 2.9% respectively.
Abstract: We report on the optical properties of the InGaN-based red LED grown on a c-plane sapphire substrate. Blue emission due to phase separation was successfully reduced in the red LED with an active layer consisting of 4-period InGaN multiple quantum wells embedding an AlGaN interlayer with the Al content of 90% on each quantum well. The light output power and external quantum efficiency at a dc current of 20 mA were 1.1 mW and 2.9% with the wavelength of 629 nm, respectively. This is the first demonstration of a nitride-based red LED with the light output power exceeding 1 mW at 20 mA.

211 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers, ranging from basic empirical approaches to advanced self-consistent techniques.
Abstract: Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrodinger equation and Schrodinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

197 citations


Journal ArticleDOI
TL;DR: High-resolution cathodoluminescence on cleaved nanowires allows the location with high precision of the origin of different emitted wavelengths and demonstrates that the blue peak originates from the emission of the radial quantum well on the m-planes, whereas the green peak arises from the In-rich region at the junction between them-planes and the semipolar planes.
Abstract: We report on the demonstration of MOVPE-grown single nanowire InGaN/GaN core–shell light emitting diodes (LEDs) with a transparent graphene contact for hole injection. The electrical homogeneity of the graphene-contacted LED has been assessed by electron beam induced current microscopy. By comparing graphene-contacted and metal-contacted nanowire LEDs, we show that the contact layout determines the electroluminescence spectrum. The electroluminescence changes color from green to blue with increasing injection current. High-resolution cathodoluminescence on cleaved nanowires allows the location with high precision of the origin of different emitted wavelengths and demonstrates that the blue peak originates from the emission of the radial quantum well on the m-planes, whereas the green peak arises from the In-rich region at the junction between the m-planes and the semipolar planes. The spectral behavior of the electroluminescence is understood by modeling the current distribution within the nanowire.

183 citations


Journal ArticleDOI
TL;DR: The role of quantum confinement in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties as mentioned in this paper.
Abstract: The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO2, and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include Si3N4 and Al2O3. Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters.

Journal ArticleDOI
TL;DR: MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication to achieve a good spectral matching between the emission wavelength and the detection range.
Abstract: We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal–organic vapor-phase epitaxy) InGaN/GaN p–n junction core–shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is ∼400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by ∼100 μm long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.

Journal ArticleDOI
TL;DR: In this article, the authors describe the condensation of excitons, bound electron-hole pairs in a solid, into a coherent collective electronic state and examine how they inform our understanding of this unique phase of quantum electronic matter.
Abstract: The condensation of excitons, bound electron-hole pairs in a solid, into a coherent collective electronic state was predicted more than 50 years ago. Perhaps surprisingly, the phenomenon was first observed in a system consisting of two closely spaced parallel two-dimensional electron gases in a semiconductor double quantum well. At an appropriate high magnetic field and low temperature, the bilayer electron system condenses into a state resembling a superconductor, only with the Cooper pairs replaced by excitons consisting of electrons in one layer bound to holes in the other. In spite of being charge neutral, the transport of excitons within the condensate gives rise to several spectacular electrical effects. This article describes these phenomena and examines how they inform our understanding of this unique phase of quantum electronic matter.

Journal ArticleDOI
TL;DR: In this paper, a quantum-optical (quantum-mechanical active medium and radiation field) theory is used to examine the emission properties of nanolasers under different experimental configurations.
Abstract: This review addresses ongoing discussions involving nanolaser experiments, particularly those related to thresholdless lasing or few-emitter devices. A quantum-optical (quantum-mechanical active medium and radiation field) theory is used to examine the emission properties of nanolasers under different experimental configurations. The active medium is treated as inhomogeneously broadened semiconductor quantum dots embedded in a quantum well, where carriers are introduced via current injection. Comparisons are made between a conventional laser and a nanolaser with a spontaneous emission factor of unity, as well as a laser with only a few quantum dots providing the gain. It is found that the combined exploration of intensity, coherence time, photon autocorrelation function and carrier spectral hole burning can provide a unique and consistent picture of nanolasers in the new regimes of laser operation during the transition from thermal to coherent emission. Furthermore, by reducing the number of quantum dots in the optical cavity, a clear indication of non-classical photon statistics is observed before the single-quantum-dot limit is reached. Nanolasers operate in a regime distinctly different to that of conventional lasers, and a consistent model of nanolasing physics is needed. Whereas conventional lasers are characterized by a marked intensity jump at the onset of lasing, micro- and nanocavity lasers with well-developed three-dimensional optical mode confinement can have a vanishing small intensity jump approaching thresholdless behavior. Weng Chow from Sandia National Laboratories in the United States, with colleagues Frank Jahnke and Christopher Gies from the University of Bremen in Germany, has reviewed recent nanolaser experiments and developed a model based on quantum-optical theory to examine photon statistics in the different operational regime of nanolasers compared with conventional lasers. The results dispute the notation of thresholdless lasing and suggests the emergence of non-classical photon statistics for few-atom or few-quantum-dot active regions.

Journal ArticleDOI
TL;DR: In this article, the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs) was described.
Abstract: In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

Journal ArticleDOI
TL;DR: Surprisingly, although the effective edge resistance is much greater than h/e(2), it is independent of temperature up to 30 K within experimental resolution.
Abstract: Quantum spin Hall devices with edges much longer than several microns do not display ballistic transport; that is, their measured conductances are much less than e(2)/h per edge. We imaged edge currents in InAs/GaSb quantum wells with long edges and determined an effective edge resistance. Surprisingly, although the effective edge resistance is much greater than h/e(2), it is independent of temperature up to 30 K within experimental resolution. Known candidate scattering mechanisms do not explain our observation of an effective edge resistance that is large yet temperature independent.

Journal ArticleDOI
TL;DR: GaAs-based nanowires are used as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates to demonstrate the great potential of this technology.
Abstract: Efficient infrared light emitters integrated on the mature Si technology platform could lead to on-chip optical interconnects as deemed necessary for future generations of ultrafast processors as well as to nanoanalytical functionality. Toward this goal, we demonstrate the use of GaAs-based nanowires as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates. Free-standing (In,Ga)As/GaAs coaxial multishell nanowires were grown catalyst-free on Si(111) by molecular beam epitaxy. The emission properties of single radial quantum wells were studied by cathodoluminescence spectroscopy and correlated with the growth kinetics. Controlling the surface diffusivity of In adatoms along the NW side-walls, we improved the spatial homogeneity of the chemical composition along the nanowire axis and thus obtained a narrow emission spectrum. Finally, we fabricated a light-emitting diode consisting of approximately 10(5) nanowires contacted in parallel through the Si substrate. Room-temperature electroluminescence at 985 nm was demonstrated, proving the great potential of this technology.

Journal ArticleDOI
TL;DR: The findings reveal that the heavy hole in strained Ge is a purely cubic Rashba system, which is consistent with the spin angular momentum m(j) = ± 3/2 nature of the HH wave function.
Abstract: The spin-orbit interaction (SOI) of a two-dimensional hole gas in the inversion symmetric semiconductor Ge is studied in a strained-Ge/SiGe quantum well structure. We observe weak antilocalization (WAL) in the magnetoconductivity measurement, revealing that the WAL feature can be fully described by the k-cubic Rashba SOI theory. Furthermore, we demonstrate electric field control of the Rashba SOI. Our findings reveal that the heavy hole (HH) in strained Ge is a purely cubic Rashba system, which is consistent with the spin angular momentum m(j) = ± 3/2 nature of the HH wave function.

Journal ArticleDOI
TL;DR: In this paper, the design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250nm was investigated.
Abstract: The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.

Journal ArticleDOI
TL;DR: This paper investigates reducing threshold and improving the efficiency and speed of distributed feedback hybrid silicon lasers and achieves low threshold current and direct modulation on the hybrid silicon platform for the first time.
Abstract: In this paper we investigate reducing threshold and improving the efficiency and speed of distributed feedback hybrid silicon lasers. A low threshold current of 8.8 mA was achieved for a 200 μm cavity at 20 °C. A 3 dB bandwidth of 9.5 GHz as well as 12.5 Gb/s direct modulation of DFB laser diode was achieved on the hybrid silicon platform for the first time.

Journal ArticleDOI
TL;DR: It is shown that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films, and a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks is introduced.
Abstract: Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks.

Journal ArticleDOI
TL;DR: Based on numerical simulation and comparison with measured current characteristics, the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model.
Abstract: Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.

Journal ArticleDOI
TL;DR: In this article, a spectroscopic analysis of GaAsP/InGaAs quantum well structures was performed and it was shown that carrier cooling in single quantum well samples is dominated by the rate of radiative recombination, leading to unprecedented carrier cooling lifetime.
Abstract: In a hot carrier solar cell, the steady-state carrier population is hot relative to the surrounding lattice. This requires an absorber material which restricts carrier-phonon interaction and, therefore, reduces entropic loss during thermalization. The limiting efficiency of these devices approaches 85%: the Carnot limit for a solar energy collector. A spectroscopic analysis of GaAsP/InGaAs quantum well structures shows that carrier cooling in single quantum well samples is dominated by the rate of radiative recombination, leading to unprecedented carrier cooling lifetime (τ = 5.8 ±0.1 ns). This exceptional lifetime arises due to state saturation, frustrating the carrier scattering processes. A steady-state carrier population temperature >100 K above the lattice temperature is measured under illumination equivalent to 10 000 Suns. We calculate the projected efficiency >40% for a device with these characteristics, amounting to a 3% efficiency enhancement over equivalent single-junction devices.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors demonstrate full non-destructive confinement of polaritons using a hybrid cavity composed of a single-layer subwavelength grating mirror and a distributed Bragg reflector.
Abstract: Semiconductor exciton–polaritons in planar microcavities form coherent two-dimensional condensates in non-equilibrium. However, the coupling of multiple lower-dimensional polariton quantum systems, which are critical for polaritonic quantum device applications and novel cavity-lattice physics, has been limited in conventional cavity structures. Here, we demonstrate full non-destructive confinement of polaritons using a hybrid cavity composed of a single-layer subwavelength grating mirror and a distributed Bragg reflector. Single-mode polariton lasing was observed at a chosen polarization. The incorporation of a designable slab mirror in a conventional vertical cavity, when operating in the strong-coupling regime, enables the confinement, control and coupling of polariton gasses in a scalable fashion. This approach may open the door to experimental implementations of polariton-based quantum photonic devices and coupled cavity quantum electrodynamic systems. A new microcavity featuring a subwavelength grating provides greater control over polaritons than previous techniques. Bo Zhang and co-workers from the University of Michigan, USA, and the University of Wuerzburg, Germany, fabricated a vertical semiconductor cavity in which GaAs quantum wells were sandwiched between two distributed Bragg reflectors (DBRs): a thick DBR below, and a thin DBR above. They then applied a polarization-sensitive subwavelength grating, comprising a series of slits etched into a suspended layer of Al0.15GaAs, to the top of the cavity, thus creating a top mirror with high reflectance and at the same time providing additional control over the polaritons. Their optical excitation experiments confirm that the cavity is capable of supporting low-threshold, ground-state polariton lasing at a chosen polarization. The approach potentially provides a scalable architecture for realizing coupled lattice cavity systems.

Journal ArticleDOI
TL;DR: In this paper, the thermoelectric (TE) figure of merit ZT of topological insulator Bi2Te3, Sb2Te-3, and Bi2Se3 thin film quantum wells is calculated for thicknesses below 10nm, for which hybridization of the surface states and quantum confinement in the bulk are individually predicted to enhance ZT.
Abstract: The thermoelectric (TE) figure of merit ZT of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells is calculated for thicknesses below 10 nm, for which hybridization of the surface states as well as quantum confinement in the bulk are individually predicted to enhance ZT. Here, the question is addressed what ZT can be expected from coexisting surface and bulk states in such quantum wells. It is demonstrated that the parallel contributing bulk and surface channels tend to cancel each other out. This is because the surface-to-volume ratios of the thin films prevent the domination of transport through a single channel and because the individual bulk and surface ZTs are optimized at different Fermi levels.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a comprehensive design principle for multiple quantum well (MQW) solar cells that overcomes the trade-off between light absorption and carrier transport that is based on a systematical investigation of GaAsP barrier effects on carrier dynamics that occur for various barrier widths and heights.
Abstract: Major challenges for InGaAs/GaAsP multiple quantum well (MQW) solar cells include both the difficulty in designing suitable structures and, because of the strain-balancing requirement, growing high-quality crystals. The present paper proposes a comprehensive design principle for MQWs that overcomes the trade-off between light absorption and carrier transport that is based, in particular, on a systematical investigation of GaAsP barrier effects on carrier dynamics that occur for various barrier widths and heights. The fundamental strategies related to structure optimization are as follows: (i) acknowledging that InGaAs wells should be thinner and deeper for a given bandgap to achieve both a higher absorption coefficient for 1e-1hh transitions and a lower compressive strain accumulation; (ii) understanding that GaAs interlayers with thicknesses of just a few nanometers effectively extend the absorption edge without additional compressive strain and suppress lattice relaxation during growth; and (iii) understanding that GaAsP barriers should be thinner than 3 nm to facilitate tunneling transport and that their phosphorus content should be minimized while avoiding detrimental lattice relaxation. After structural optimization of 1.23-eV bandgap quantum wells, a cell with 100-period In0.30GaAs(3.5 nm)/GaAs(2.7 nm)/GaAsP0.40(3.0 nm) MQWs exhibited significantly improved performance, showing 16.2% AM 1.5 efficiency without an anti-reflection coating, and a 70% internal quantum efficiency beyond the GaAs band edge. When compared with the GaAs control cell, the optimized cell showed an absolute enhancement in AM 1.5 efficiency, and 1.22 times higher efficiency with 38% current enhancement with an AM 1.5 cut-off using a 665-nm long-pass filter, thus indicating the strong potential of MQW cells in Ge-based 3-J tandem devices. Copyright © 2013 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Close to the phase transition between the quantum spin Hall and time-reversal broken phases, the edge transport shows quantized conductance in small samples, whereas in long samples the mean free path associated with the backscattering at the edge is temperature independent, in agreement with recent experiments.
Abstract: We study the phase diagram of the inverted $\mathrm{InAs}/\mathrm{GaSb}$ bilayer quantum wells. For a small tunneling amplitude between the layers, we find that the system is prone to the formation of an $s$-wave exciton condensate phase, where the spin structure of the order parameter is uniquely determined by the small spin-orbit coupling arising from the bulk inversion asymmetry. The phase is topologically trivial and does not support edge transport. On the contrary, for a large tunneling amplitude, we obtain a topologically nontrivial quantum spin Hall insulator phase with a $p$-wave exciton order parameter, which enhances the hybridization gap. These topologically distinct insulators are separated by an insulating phase with spontaneously broken time-reversal symmetry. Close to the phase transition between the quantum spin Hall and time-reversal broken phases, the edge transport shows quantized conductance in small samples, whereas in long samples the mean free path associated with the backscattering at the edge is temperature independent, in agreement with recent experiments.

Journal ArticleDOI
TL;DR: In this article, the authors presented a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs).
Abstract: In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/AlA/InP and InAs-InGaAsP/INP material systems, from the angles of growth and device performance.

Journal ArticleDOI
TL;DR: A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy, high-resolution scanning transmission electron microscopy and atom probe tomography, supporting the interpretation that the observed μPL narrow emission lines are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW).
Abstract: A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9–3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.