scispace - formally typeset
Search or ask a question

Showing papers on "Qubit published in 2004"


Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: It is shown that the strong coupling regime can be attained in a solid-state system, and the concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter.
Abstract: The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics1 for several decades and has generated the field of cavity quantum electrodynamics2,3. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

3,452 citations


Journal ArticleDOI
TL;DR: In this paper, a realizable architecture using one-dimensional transmission line resonators was proposed to reach the strong coupling limit of cavity quantum electrodynamics in superconducting electrical circuits.
Abstract: We propose a realizable architecture using one-dimensional transmission line resonators to reach the strong-coupling limit of cavity quantum electrodynamics in superconducting electrical circuits. The vacuum Rabi frequency for the coupling of cavity photons to quantized excitations of an adjacent electrical circuit (qubit) can easily exceed the damping rates of both the cavity and qubit. This architecture is attractive both as a macroscopic analog of atomic physics experiments and for quantum computing and control, since it provides strong inhibition of spontaneous emission, potentially leading to greatly enhanced qubit lifetimes, allows high-fidelity quantum nondemolition measurements of the state of multiple qubits, and has a natural mechanism for entanglement of qubits separated by centimeter distances. In addition it would allow production of microwave photon states of fundamental importance for quantum communication.

2,633 citations


Journal ArticleDOI
TL;DR: It is shown that 2log3N is the maximal perfect communication distance for hypercube geometries if one allows fixed but different couplings between the qubits, then perfect state transfer can be achieved over arbitrarily long distances in a linear chain.
Abstract: We propose a class of qubit networks that admit the perfect state transfer of any quantum state in a fixed period of time. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2log3N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits, then perfect state transfer can be achieved over arbitrarily long distances in a linear chain.

1,014 citations


Journal ArticleDOI
02 Apr 2004-Science
TL;DR: By coupling a single-electron transistor to a high-quality factor, 19.7-megahertz nanomechanical resonator, position detection approached that set by the Heisenberg uncertainty principle limit as discussed by the authors.
Abstract: By coupling a single-electron transistor to a high–quality factor, 19.7-megahertz nanomechanical resonator, we demonstrate position detection approaching that set by the Heisenberg uncertainty principle limit. At millikelvin temperatures, position resolution a factor of 4.3 above the quantum limit is achieved and demonstrates the near-ideal performance of the single-electron transistor as a linear amplifier. We have observed the resonator's thermal motion at temperatures as low as 56 millikelvin, with quantum occupation factors of N_(TH) = 58. The implications of this experiment reach from the ultimate limits of force microscopy to qubit readout for quantum information devices.

816 citations


Journal ArticleDOI
TL;DR: Density matrix tomography of the CROT gate shows that the gate fidelity achieved in the experiments is up to 0.9, good enough to be used in quantum algorithms.
Abstract: Rabi nutations of a single nuclear spin in a solid have been observed. The experiments were carried out on a single electron and a single 13C nuclear spin of a single nitrogen-vacancy defect center in diamond. The system was used for implementation of quantum logical NOT and a conditional two-qubit gate (CROT). Density matrix tomography of the CROT gate shows that the gate fidelity achieved in our experiments is up to 0.9, good enough to be used in quantum algorithms.

710 citations


Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: This work demonstrates entanglement between a superconducting flux qubit and asuperconducting quantum interference device (SQUID), which provides the measurement system for detecting the quantum states and an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator.
Abstract: In the emerging field of quantum computation and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations, direct coupling between two qubits and the realization of a quantum gate have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments and cavity quantum electrodynamics-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system.

635 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported a quantum key distribution over a standard telecom fiber exceeding 100 km in length with a quantum bit error ratio of 8.9% for a 122 km link, allowing a secure shared key to be formed after error correction and privacy amplification.
Abstract: We report a demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimization of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122 km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/s are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography.

628 citations


Journal ArticleDOI
02 Dec 2004-Nature
TL;DR: In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.
Abstract: Scalable quantum computation1 and communication require error control to protect quantum information against unavoidable noise. Quantum error correction2,3 protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments4,5,6, but the inherent limitations of this technique7 prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.

485 citations


Journal ArticleDOI
13 May 2004-Nature
TL;DR: A four-photon interferometer based on linear optics is demonstrated, demonstrating the presence of a four-particle mode-entangled state and anticipating that this scheme should be extendable to arbitrary photon numbers, holding promise for realizable applications with entanglement-enhanced performance.
Abstract: Superposition is one of the most distinctive features of quantum theory and has been demonstrated in numerous single-particle interference experiments. Quantum entanglement, the coherent superposition of states in multi-particle systems, yields more complex phenomena. One important type of multi-particle experiment uses path-entangled number states, which exhibit pure higher-order interference and the potential for applications in metrology and imaging; these include quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit, or quantum lithography beyond the classical diffraction limit. It has been generally understood that in optical implementations of such schemes, lower-order interference effects always decrease the overall performance at higher particle numbers. Such experiments have therefore been limited to two photons. Here we overcome this limitation, demonstrating a four-photon interferometer based on linear optics. We observe interference fringes with a periodicity of one-quarter of the single-photon wavelength, confirming the presence of a four-particle mode-entangled state. We anticipate that this scheme should be extendable to arbitrary photon numbers, holding promise for realizable applications with entanglement-enhanced performance.

475 citations


Posted Content
TL;DR: In this paper, a linear-depth ripple-carry quantum addition circuit with only a single ancillary qubit has been proposed, which has lower depth and fewer gates than previous ripple carry adders.
Abstract: We present a new linear-depth ripple-carry quantum addition circuit. Previous addition circuits required linearly many ancillary qubits; our new adder uses only a single ancillary qubit. Also, our circuit has lower depth and fewer gates than previous ripple-carry adders.

396 citations


Journal ArticleDOI
TL;DR: Spectroscopic data is reported that shows a level splitting characteristic of coupling between a two-state qubit and a two -level system and Rabi oscillations whose "coherence amplitude" is significantly degraded by the presence of these spurious microwave resonators.
Abstract: Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. Improving the operation of a Josephson junction based phase qubit has revealed microscopic two-level systems or resonators within the tunnel barrier that cause decoherence. We report spectroscopic data that show a level splitting characteristic of coupling between a two-state qubit and a two-level system. Furthermore, we show Rabi oscillations whose "coherence amplitude" is significantly degraded by the presence of these spurious microwave resonators. The discovery of these resonators impacts the future of Josephson qubits as well as existing Josephson technologies.

Journal ArticleDOI
TL;DR: The localizable entanglement in familiar spin systems is analyzed and the results on the hand of the Ising spin model are illustrated, in which characteristic features for a quantum phase transition such as a divergingEntanglement length are observed.
Abstract: We consider pure quantum states of N>>1 spins or qubits and study the average entanglement that can be localized between two separated spins by performing local measurements on the other individual spins. We show that all classical correlation functions provide lower bounds to this localizable entanglement, which follows from the observation that classical correlations can always be increased by doing appropriate local measurements on the other qubits. We analyze the localizable entanglement in familiar spin systems and illustrate the results on the hand of the Ising spin model, in which we observe characteristic features for a quantum phase transition such as a diverging entanglement length.

Posted Content
TL;DR: This paper settles the question and shows that the 2-LOCAL HAMILTONIAN problem is QMA-complete, and demonstrates that adiabatic computation with two-local interactions on qubits is equivalent to standard quantum computation.
Abstract: The k-local Hamiltonian problem is a natural complete problem for the complexity class QMA, the quantum analog of NP. It is similar in spirit to MAX-k-SAT, which is NP-complete for k<=2. It was known that the problem is QMA-complete for any k <= 3. On the other hand 1-local Hamiltonian is in P, and hence not believed to be QMA-complete. The complexity of the 2-local Hamiltonian problem has long been outstanding. Here we settle the question and show that it is QMA-complete. We provide two independent proofs; our first proof uses only elementary linear algebra. Our second proof uses a powerful technique for analyzing the sum of two Hamiltonians; this technique is based on perturbation theory and we believe that it might prove useful elsewhere. Using our techniques we also show that adiabatic computation with two-local interactions on qubits is equivalent to standard quantum computation.

Journal ArticleDOI
04 Jun 2004-Science
TL;DR: The deterministic creation of maximally entangled three-qubit states—specifically the Greenberger-Horne-Zeilinger (GHZ) state and the W state—with a trapped-ion quantum computer is reported and conditional operations controlled by the results from reading out one qubit are demonstrated.
Abstract: We report the deterministic creation of maximally entangled three-qubit states-specifically the Greenberger-Horne-Zeilinger (GHZ) state and the W state-with a trapped-ion quantum computer. We read out one of the qubits selectively and show how GHZ and W states are affected by this local measurement. Additionally, we demonstrate conditional operations controlled by the results from reading out one qubit. Tripartite entanglement is deterministically transformed into bipartite entanglement by local operations only. These operations are the measurement of one qubit of a GHZ state in a rotated basis and, conditioned on this measurement result, the application of single-qubit rotations.

Journal ArticleDOI
TL;DR: This work reports on the experimental observation of the three-photon polarization-entangled W state using spontaneous parametric down-conversion and demonstrates the high degree of two- photon entanglement in the W state.
Abstract: We report on the experimental observation of the three-photon polarization-entangled W state using spontaneous parametric down-conversion. This state is inequivalent to the Greenberger-Horne-Zeilinger state under stochastic local operations and classical communications and thus is the representative of the second class of genuine tripartite entanglement. We study the characteristic features of entanglement and demonstrate the high degree of two-photon entanglement in the W state.

Journal ArticleDOI
TL;DR: In this paper, a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized, was used to encode a single-atom quantum computer.
Abstract: Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.

Journal ArticleDOI
TL;DR: It is shown experimentally and theoretically that qutrits with even a small amount of decoherence cannot offer increased security over qubits, and model the sensitivity of this to mixture shows that this cannot be done.
Abstract: We produce and holographically measure entangled qudits encoded in transverse spatial modes of single photons. With the novel use of a quantum state tomography method that only requires two-state superpositions, we achieve the most complete characterization of entangled qutrits to date. Ideally, entangled qutrits provide better security than qubits in quantum bit commitment: we model the sensitivity of this to mixture and show experimentally and theoretically that qutrits with even a small amount of decoherence cannot offer increased security over qubits.

Journal ArticleDOI
TL;DR: It is found that the dominant energy relaxation process is a spontaneous emission induced by quantum noise coupled to the charge degree of freedom, roughly proportional to the qubit excitation energy.
Abstract: We study decoherence of the Josephson charge qubit by measuring energy relaxation and dephasing with help of the single-shot readout. We found that the dominant energy relaxation process is a spontaneous emission induced by quantum noise coupled to the charge degree of freedom. Spectral density of the noise at high frequencies is roughly proportional to the qubit excitation energy.

Journal ArticleDOI
TL;DR: The realization of a quantum register is demonstrated using a string of single neutral atoms which are trapped in an optical dipole trap and the predominant dephasing mechanism is identified.
Abstract: We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our addressing scheme operates with a high spatial resolution, and qubit rotations on individual atoms are performed with 99% contrast. In a final readout operation we analyze each individual atomic state. Finally, we have measured the coherence time and identified the predominant dephasing mechanism for our register.

Posted Content
TL;DR: In this article, the authors discuss how qubit decoherence is affected by the intrinsic noise of the Josephson tunnel junction and what can be done to improve it, and propose a new design of superconducting qubits based on multi-junction circuits.
Abstract: Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

Journal ArticleDOI
TL;DR: This work shows how to implement a mirror inversion of the state of theregister in each excitation subspace with respect to the center of the register to facilitate transfer of data in linear quantum registers.
Abstract: Transfer of data in linear quantum registers can be significantly simplified with preengineered but not dynamically controlled interqubit couplings. We show how to implement a mirror inversion of the state of the register in each excitation subspace with respect to the center of the register. Our construction is especially appealing as it requires no dynamical control over individual interqubit interactions. If, however, individual control of the interactions is available then the mirror inversion operation can be performed on any substring of qubits in the register. In this case, a sequence of mirror inversions can generate any permutation of a quantum state of the involved qubits.

Journal ArticleDOI
TL;DR: It is discussed in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.
Abstract: Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

Posted Content
15 Oct 2004
TL;DR: In this paper, the authors describe a novel protocol for a quantum repeater which enables long distance quantum communication through realistic, lossy photonic channels, which incorporates active purification of arbitrary errors at each step of the protocol using only two qubits at each repeater station.
Abstract: We describe a novel protocol for a quantum repeater which enables long distance quantum communication through realistic, lossy photonic channels. Contrary to previous proposals, our protocol incorporates active purification of arbitrary errors at each step of the protocol using only two qubits at each repeater station. Because of these minimal physical requirements, the present protocol can be realized in simple physical systems such as solid-state single photon emitters. As an example, we show how nitrogen vacancy color centers in diamond can be used to implement the protocol, using the nuclear and electronic spin to form the two qubits.

Journal ArticleDOI
TL;DR: This work reconstructs the density matrix of arbitrary atomic Bell states with two trapped ions using single qubit rotations and subsequent measurements with near-unity detection efficiency, and investigates the temporal decay of entanglement.
Abstract: Arbitrary atomic Bell states with two trapped ions are generated in a deterministic and preprogrammed way. The resulting entanglement is quantitatively analyzed using various measures of entanglement. For this, we reconstruct the density matrix using single qubit rotations and subsequent measurements with near-unity detection efficiency. This procedure represents the basic building block for future process tomography of quantum computations. As a first application, the temporal decay of entanglement is investigated in detail. We observe ultralong lifetimes for the Bell states Psi(+/-), close to the fundamental limit set by the spontaneous emission from the metastable upper qubit level and longer than all reported values by 3 orders of magnitude.

Journal ArticleDOI
TL;DR: A way to teleport multiqubit quantum information from a sender to a distant receiver via the control of many agents in a network is presented, in such a way that the required auxiliary qubit resources, local operation, and classical communication are considerably reduced.
Abstract: We present a way to teleport multiqubit quantum information from a sender to a distant receiver via the control of many agents in a network. We show that the original state of each qubit can be restored by the receiver as long as all the agents collaborate. However, even if one agent does not cooperate, the receiver cannot fully recover the original state of each qubit. The method operates essentially through entangling quantum information during teleportation, in such a way that the required auxiliary qubit resources, local operation, and classical communication are considerably reduced for the present purpose.

Journal ArticleDOI
TL;DR: The results reveal a new aspect of the quantum behavior of Josephson junctions, and they demonstrate the means to measure two-qubit interactions in the time domain.
Abstract: We have detected coherent quantum oscillations between Josephson phase qubits and critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. These results reveal a new aspect of the quantum behavior of Josephson junctions, and they demonstrate the means to measure two-qubit interactions in the time domain. The junction-fluctuator interaction also points to a possible mechanism for decoherence and reduced fidelity in superconducting qubits.

Journal ArticleDOI
TL;DR: In this paper, the authors give quantum circuits that simulate an arbitrary two-qubit unitary operator up to a global phase, and prove that gate counts are optimal in the worst and average cases.
Abstract: We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to a global phase. For several quantum gate libraries we prove that gate counts are optimal in the worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, the best gate counts can be achieved by a single universal circuit. To compute the gate parameters in universal circuits, we use only closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in $\mathrm{C}++$.

Journal ArticleDOI
TL;DR: A unified theory of dynamically suppressed decay and decoherence by external fields in qubits coupled to arbitrary thermal baths and dephasing sources is developed.
Abstract: We develop a unified theory of dynamically suppressed decay and decoherence by external fields in qubits coupled to arbitrary thermal baths and dephasing sources. This general theory does not invoke the rotating-wave approximation, which fails for ultrafast field-induced modulations of qubit-bath coupling. Considerations for optimizing the dynamical suppression are outlined.

Journal ArticleDOI
TL;DR: In this article, a highly symmetric and efficient scheme for the determination of a single qubit state, such as the polarization properties of photons emitted by a single-photon source, is presented.
Abstract: We present, and analyze thoroughly, a highly symmetric and efficient scheme for the determination of a single-qubit state, such as the polarization properties of photons emitted by a single-photon source. In our scheme there are only four measured probabilities, just enough for the determination of the three parameters that specify the qubit state, whereas the standard procedure would measure six probabilities.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a quantum computing architecture based on the integration of nanomechanical resonators with Josephson-junction phase qubits, where the resonators are GHz-frequency, dilatational disk resonators, which couple to the junction through a piezoelectric interaction.
Abstract: We propose a quantum computing architecture based on the integration of nanomechanical resonators with Josephson-junction phase qubits. The resonators are GHz-frequency, dilatational disk resonators, which couple to the junctions through a piezoelectric interaction. The system is analogous to a collection of tunable few-level atoms (the Josephson junctions) coupled to one or more electromagnetic cavities (the resonators). Our architecture combines desirable features of solid-state and optical approaches and may make quantum computing possible in a scalable, solid-state environment.