scispace - formally typeset
Search or ask a question
Topic

Qubit

About: Qubit is a research topic. Over the lifetime, 29978 publications have been published within this topic receiving 723084 citations. The topic is also known as: quantum bit & qbit.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning, and quantum secret sharing.
Abstract: We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of $F=0.56\ifmmode\pm\else\textpm\fi{}0.02$ with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by 4 standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon Greenberger-Horne-Zeilinger and $W$ states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning, and quantum secret sharing.

228 citations

Journal ArticleDOI
TL;DR: In this article, the main problems facing the attempt to build quantum information processing systems (like quantum computers) from spin-based qubits are discussed, along with a description of the qubits and their interactions in terms of physical spin qubits.
Abstract: This introductory review discusses the main problems facing the attempt to build quantum information processing systems (like quantum computers) from spin-based qubits. We emphasize ‘bottom-up’ attempts using methods from chemistry. The essentials of quantum computing are explained, along with a description of the qubits and their interactions in terms of physical spin qubits. The main problem to be overcome in this whole field is decoherence—it must be considered in any design for qubits. We give an overview of how decoherence works, and then describe some of the practical ways to suppress contributions to decoherence from spin bath and oscillator bath environments, and from dipolar interactions. Dipolar interactions create special problems of their own because of their long range. Finally, taking into account the problems raised by decoherence, by dipolar interactions, and by architectural constraints, we discuss various strategies for making chemistry-based spin qubits, using both magnetic molecules and magnetic ions.

228 citations

Journal ArticleDOI
TL;DR: The coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator is observed and the idea of using oscillators as couplers of solid-state qubits is supported.
Abstract: We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillation: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We also show that we can detect the state of the oscillator with the qubit and thereby obtained evidence of level quantization of the LC circuit. Our results support the idea of using oscillators as couplers of solid-state qubits.

228 citations

Journal ArticleDOI
TL;DR: In this paper, the exact entanglement dynamics of two qubits in a common structured reservoir were studied and the backaction of the non-Markovian reservoir was shown to be responsible for revivals and disentanglement after sudden death.
Abstract: We study the exact entanglement dynamics of two qubits in a common structured reservoir. We demonstrate that for certain classes of entangled states, entanglement sudden death occurs, while for certain initially factorized states, entanglement sudden birth takes place. The backaction of the non-Markovian reservoir is responsible for revivals of entanglement after sudden death has occurred, and also for periods of disentanglement following entanglement sudden birth.

227 citations

Posted Content
Dave Wecker1, Krysta M. Svore1
TL;DR: The LIQUi|> project as discussed by the authors is a modular software architecture designed to control quantum hardware, which enables easy programming, compilation, and simulation of quantum algorithms and circuits, and is independent of a specific quantum architecture.
Abstract: Languages, compilers, and computer-aided design tools will be essential for scalable quantum computing, which promises an exponential leap in our ability to execute complex tasks. LIQUi|> is a modular software architecture designed to control quantum hardware. It enables easy programming, compilation, and simulation of quantum algorithms and circuits, and is independent of a specific quantum architecture. LIQUi|> contains an embedded, domain-specific language designed for programming quantum algorithms, with F# as the host language. It also allows the extraction of a circuit data structure that can be used for optimization, rendering, or translation. The circuit can also be exported to external hardware and software environments. Two different simulation environments are available to the user which allow a trade-off between number of qubits and class of operations. LIQUi|> has been implemented on a wide range of runtimes as back-ends with a single user front-end. We describe the significant components of the design architecture and how to express any given quantum algorithm.

227 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum entanglement
39.5K papers, 1M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
95% related
Quantum
60K papers, 1.2M citations
95% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,977
20224,380
20213,014
20203,119
20192,594
20182,228