scispace - formally typeset
Search or ask a question
Topic

Qubit

About: Qubit is a research topic. Over the lifetime, 29978 publications have been published within this topic receiving 723084 citations. The topic is also known as: quantum bit & qbit.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into super-conducting islands with significant charging energy.
Abstract: We present designs for scalable quantum computers composed of qubits encoded in aggregates of four or more Majorana zero modes, realized at the ends of topological superconducting wire segments that are assembled into superconducting islands with significant charging energy. Quantum information can be manipulated according to a measurement-only protocol, which is facilitated by tunable couplings between Majorana zero modes and nearby semiconductor quantum dots. Our proposed architecture designs have the following principal virtues: (1) the magnetic field can be aligned in the direction of all of the topological superconducting wires since they are all parallel; (2) topological T junctions are not used, obviating possible difficulties in their fabrication and utilization; (3) quasiparticle poisoning is abated by the charging energy; (4) Clifford operations are executed by a relatively standard measurement: detection of corrections to quantum dot energy, charge, or differential capacitance induced by quantum fluctuations; (5) it is compatible with strategies for producing good approximate magic states.

587 citations

Journal ArticleDOI
TL;DR: In this article, a circuit that pairs a flux qubit with an LC oscillator via Josephson junctions is proposed, and the energy eigenstate including the ground state is predicted to be highly entangled.
Abstract: A circuit that pairs a flux qubit with an LC oscillator via Josephson junctions pushes the coupling between light to matter to uncharted territory, with the potential for new applications in quantum technologies. The interaction between an atom and the electromagnetic field inside a cavity1,2,3,4,5,6 has played a crucial role in developing our understanding of light–matter interaction, and is central to various quantum technologies, including lasers and many quantum computing architectures. Superconducting qubits7,8 have allowed the realization of strong9,10 and ultrastrong11,12,13 coupling between artificial atoms and cavities. If the coupling strength g becomes as large as the atomic and cavity frequencies (Δ and ωo, respectively), the energy eigenstates including the ground state are predicted to be highly entangled14. There has been an ongoing debate15,16,17 over whether it is fundamentally possible to realize this regime in realistic physical systems. By inductively coupling a flux qubit and an LC oscillator via Josephson junctions, we have realized circuits with g/ωo ranging from 0.72 to 1.34 and g/Δ ≫ 1. Using spectroscopy measurements, we have observed unconventional transition spectra that are characteristic of this new regime. Our results provide a basis for ground-state-based entangled pair generation and open a new direction of research on strongly correlated light–matter states in circuit quantum electrodynamics.

584 citations

Journal ArticleDOI
TL;DR: In this article, a modular ion trap quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits is presented. But the architecture is not fault-tolerant.
Abstract: The practical construction of scalable quantum-computer hardware capable of executing nontrivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates between qubit memories within a single register are accomplished using natural interactions between the qubits, and entanglement between separate registers is completed via a probabilistic photonic interface between qubits in different registers, even over large distances. We show that this architecture can be made fault tolerant, and demonstrate its viability for fault-tolerant execution of modest size quantum circuits.

580 citations

Journal ArticleDOI
01 Nov 2013-Science
TL;DR: In this article, a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling is used to generate and manipulate complex multiphoton states.
Abstract: In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences provided one has the ability to generate and manipulate complex multiphoton states. We demonstrate multiphoton control by using a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous manipulation of hundreds of photons. With a tool set of conditional qubit-photon logic, we mapped an arbitrary qubit state to a superposition of coherent states, known as a "cat state." We created cat states as large as 111 photons and extended this protocol to create superpositions of up to four coherent states. This control creates a powerful interface between discrete and continuous variable quantum computation and could enable applications in metrology and quantum information processing.

579 citations

Journal ArticleDOI
TL;DR: Quantum Cloning Machines (QCM) are universal devices to translate quantum information into classical information and it is proved that the fidelity (quality) of these copies is optimal.
Abstract: We present quantum cloning machines that transform $N$ identical qubits into $MgN$ identical copies and we prove that the fidelity (quality) of these copies is optimal. The connection between cloning and measurement is discussed in detail. When the number of clones $M$ tends towards infinity, the fidelity of each clone tends towards the optimal fidelity that can be obtained by a measurement on the input qubits. More generally, quantum cloning machines are universal devices to translate quantum information into classical information.

572 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum entanglement
39.5K papers, 1M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
95% related
Quantum
60K papers, 1.2M citations
95% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,977
20224,380
20213,014
20203,119
20192,594
20182,228