scispace - formally typeset
Search or ask a question
Topic

Qubit

About: Qubit is a research topic. Over the lifetime, 29978 publications have been published within this topic receiving 723084 citations. The topic is also known as: quantum bit & qbit.


Papers
More filters
Journal ArticleDOI
TL;DR: Entanglement of up to 20 qubits is achieved in superconducting and trapped atom platforms and “Schrödinger cat” states of the Greenberger-Horne-Zeilinger (GHZ) type with up to20 qubits are created, establishing important ingredients for quantum information processing and quantum metrology.
Abstract: Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the deterministic generation of 'Schrodinger cat' states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.

364 citations

Journal ArticleDOI
TL;DR: In this article, the authors used superconducting qubits to synthesize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena.
Abstract: The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through the creation of photon vacancies, or ‘holes’, which circulate in the opposite direction. The combination of these key elements results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons. Superconducting circuits, coupled to form a ring in which a photonic excitation can circulate between sites, are established as a versatile platform for studying the interplay of strong particle interactions and external fields.

363 citations

Journal ArticleDOI
TL;DR: In this paper, the authors theoretically study measurement-induced dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster et al.
Abstract: We theoretically study measurement-induced dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster et al. [Phys. Rev. Lett. 94, 123602 (2005)]. Strong coupling of the qubit to the resonator leads to a significant ac Stark shift of the qubit transition frequency. As a result, quantum fluctuations in the photon number populating the resonator cause dephasing of the qubit. We find good agreement between the predicted line shape of the qubit spectrum and the experimental results. Furthermore, in the strongly dispersive limit, where the Stark shift per photon is large compared to the cavity decay rate and the qubit linewidth, we predict that the qubit spectrum will be split into multiple peaks, with each peak corresponding to a different number of photons in the cavity.

363 citations

Posted Content
TL;DR: This paper settles the question and shows that the 2-LOCAL HAMILTONIAN problem is QMA-complete, and demonstrates that adiabatic computation with two-local interactions on qubits is equivalent to standard quantum computation.
Abstract: The k-local Hamiltonian problem is a natural complete problem for the complexity class QMA, the quantum analog of NP. It is similar in spirit to MAX-k-SAT, which is NP-complete for k<=2. It was known that the problem is QMA-complete for any k <= 3. On the other hand 1-local Hamiltonian is in P, and hence not believed to be QMA-complete. The complexity of the 2-local Hamiltonian problem has long been outstanding. Here we settle the question and show that it is QMA-complete. We provide two independent proofs; our first proof uses only elementary linear algebra. Our second proof uses a powerful technique for analyzing the sum of two Hamiltonians; this technique is based on perturbation theory and we believe that it might prove useful elsewhere. Using our techniques we also show that adiabatic computation with two-local interactions on qubits is equivalent to standard quantum computation.

362 citations

Journal ArticleDOI
TL;DR: Zuchongzhi as mentioned in this paper is a two-dimensional programmable superconducting quantum processor, which is composed of 66 functional qubits in a tunable coupling architecture, and performs random quantum circuits sampling for benchmarking.
Abstract: Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature 574, 505 (2019)NATUAS0028-083610.1038/s41586-019-1666-5. We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.

362 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum entanglement
39.5K papers, 1M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
95% related
Quantum
60K papers, 1.2M citations
95% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,977
20224,380
20213,014
20203,119
20192,594
20182,228