scispace - formally typeset
Search or ask a question
Topic

Qubit

About: Qubit is a research topic. Over the lifetime, 29978 publications have been published within this topic receiving 723084 citations. The topic is also known as: quantum bit & qbit.


Papers
More filters
Journal ArticleDOI
TL;DR: Antiferromagnetic Cr7Ni rings can be chemically linked to each other and that the coupling between their spins can be tuned by choosing the linker, and calculations are presented that demonstrate how realistic microwave pulse sequences could be used to generate maximally entangled states in such molecules.
Abstract: The ability to assemble weakly interacting subsystems is a prerequisite for implementing quantum information processing and generating controlled entanglement. In recent years, molecular nanomagnets have been proposed as suitable candidates for qubit encoding and manipulation. In particular, antiferromagnetic Cr7Ni rings behave as effective spin-1/2 systems at low temperature and show long decoherence times. Here, we show that these rings can be chemically linked to each other and that the coupling between their spins can be tuned by choosing the linker. We also present calculations that demonstrate how realistic microwave pulse sequences could be used to generate maximally entangled states in such molecules. The ability to assemble weakly-interacting subsystems is a prerequisite for implementing quantum-information processing. In recent years, molecular nanomagnets have been proposed as suitable candidates for qubit encoding and manipulation, with antiferromagnetic Cr7Ni rings of particular interest. It has now been shown that such rings can be chemically linked to each other and the coupling between their spins tuned through the choice of chemical linker.

342 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that by subjecting each electron spin to a magnetic field of different magnitude, one can achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times.
Abstract: One fundamental requirement for quantum computation is to carry out universal manipulations of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here, we show that by subjecting each electron spin to a magnetic field of different magnitude, we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic-field gradient of several hundred millitesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single- and potentially multiple-qubit operations with gate times that approach the threshold required for quantum error correction. The spin state of two electrons in a double well is a promising qubit. Now, such qubits can be arbitrarily rotated around two different axes by applying a magnetic field of different magnitude to each electron. This can be done in nanoseconds, before the stored information is lost.

341 citations

Journal ArticleDOI
TL;DR: Measurements of the level splitting and dephasing due to the voltage noise of a GaAs singlet-triplet qubit during exchange oscillations are shown, finding that the voltage fluctuations are non-Markovian even at high frequencies and exhibit a strong temperature dependence.
Abstract: Two level systems that can be reliably controlled and measured hold promise as qubits both for metrology and for quantum information science. Since a fluctuating environment limits the performance of qubits in both capacities, understanding environmental coupling and dynamics is key to improving qubit performance. We show measurements of the level splitting and dephasing due to the voltage noise of a GaAs singlet-triplet qubit during exchange oscillations. Unexpectedly, the voltage fluctuations are non-Markovian even at high frequencies and exhibit a strong temperature dependence. This finding has impacts beyond singlet-triplet qubits since nearly all solid state qubits suffer from some kind of charge noise. The magnitude of the fluctuations allows the qubit to be used as a charge sensor with a sensitivity of 2 × 10(-8)e/sqrt[Hz], 2 orders of magnitude better than a quantum-limited rf single electron transistor. Based on these measurements, we provide recommendations for improving qubit coherence, allowing for higher fidelity operations and improved charge sensitivity.

341 citations

Journal ArticleDOI
01 Jul 2021-Nature
TL;DR: In this paper, a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states, is presented.
Abstract: Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2–6, while at the same time enabling new methods for computation7–10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms. A programmable quantum simulator with 256 qubits is created using neutral atoms in two-dimensional optical tweezer arrays, demonstrating a quantum phase transition and revealing new quantum phases of matter.

340 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems, allowing for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates.
Abstract: Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.

340 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum entanglement
39.5K papers, 1M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
95% related
Quantum
60K papers, 1.2M citations
95% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,977
20224,380
20213,014
20203,119
20192,594
20182,228