scispace - formally typeset
Search or ask a question
Topic

Qubit

About: Qubit is a research topic. Over the lifetime, 29978 publications have been published within this topic receiving 723084 citations. The topic is also known as: quantum bit & qbit.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors rigorously prove two results, assuming V(θ) is an alternating layered ansatz composed of blocks forming local 2-designs, and they explore the feasibility of training depending on the type of cost functions, showing that local ones are less prone to the barren plateau problem.
Abstract: Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized quantum circuit V(θ) to minimize a cost function C. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming V(θ) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining C in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when V(θ) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining C with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of V(θ) is $${\mathcal{O}}(\mathrm{log}\,n)$$ . Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation. Parametrised quantum circuits are a promising hybrid classical-quantum approach, but rigorous results on their effective capabilities are rare. Here, the authors explore the feasibility of training depending on the type of cost functions, showing that local ones are less prone to the barren plateau problem.

332 citations

Journal ArticleDOI
TL;DR: An efficient and intuitive framework for universal quantum computation is presented that uses pairs of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to produce all gate operations.
Abstract: An efficient and intuitive framework for universal quantum computation is presented that uses pairs of spin-1/2 particles to form logical qubits and a single physical interaction, Heisenberg exchange, to produce all gate operations. Only two Heisenberg gate operations are required to produce a controlled $\ensuremath{\pi}$-phase shift, compared to nineteen for exchange-only proposals employing three spins. Evolved from well-studied decoherence-free subspaces, this architecture inherits immunity from collective decoherence mechanisms. The simplicity and adaptability of this approach should make it attractive for spin-based quantum computing architectures.

331 citations

Journal ArticleDOI
13 Oct 2011-Nature
TL;DR: Evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.
Abstract: During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.

331 citations

Journal ArticleDOI
TL;DR: In this paper, a general optomechanical system for converting photons to phonons in an efficient and reversible manner is described, based on coupled photonic and phononic crystal planar circuits.
Abstract: In this paper, we describe a general optomechanical system for converting photons to phonons in an efficient and reversible manner. We analyze classically and quantum mechanically the conversion process and proceed to a more concrete description of a phonon–photon translator (PPT) formed from coupled photonic and phononic crystal planar circuits. The application of the PPT to RF-microwave photonics and circuit QED, including proposals utilizing this system for optical wavelength conversion, long-lived quantum memory and state transfer from optical to superconducting qubits, is considered.

330 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate trapping and imaging of 250 single atoms in a three-dimensional optical lattice and show that imaging is highly unlikely to change the pattern of site occupancy, which in combination with reproducible imaging should allow verifiable filling of vacancies, execution of site-specific quantum gates and measurement of each atom's final quantum state.
Abstract: Asingle neutral atom trapped by light is a promising qubit. It has weak, well-understood interactions with the environment, its internal state can be precisely manipulated1, interactions that entangle atoms can be varied from negligible to strong2,3,4 and many single atoms can be trapped near each other in an optical lattice5. This collection of features would allow for a relatively large quantum computer6 if each neutral atom qubit could be independently detected and addressed7,8,9,10. A quantum computer with even 50 qubits would allow quantum simulations that are out of the reach of classical computers11,12. So far, fewer than ten single atoms have been simultaneously imaged13. Here we demonstrate trapping and imaging of 250 single atoms in a three-dimensional optical lattice and show that imaging is highly unlikely to change the pattern of site occupancy. Our lattice spacing is large enough that, in principle, individual atoms can be addressed, which in combination with reproducible imaging should allow for verifiable filling of vacancies, execution of site-specific quantum gates and measurement of each atom’s final quantum state14,15. The lattice we use can readily be scaled to include thousands of trapped atoms.

330 citations


Network Information
Related Topics (5)
Quantum information
22.7K papers, 911.3K citations
97% related
Quantum entanglement
39.5K papers, 1M citations
96% related
Open quantum system
20.4K papers, 924.6K citations
95% related
Quantum
60K papers, 1.2M citations
95% related
Hamiltonian (quantum mechanics)
48.6K papers, 1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,977
20224,380
20213,014
20203,119
20192,594
20182,228