scispace - formally typeset
Search or ask a question
Topic

Radiation-induced lung injury

About: Radiation-induced lung injury is a research topic. Over the lifetime, 258 publications have been published within this topic receiving 6877 citations. The topic is also known as: Radiation Pneumonitis.


Papers
More filters
Journal ArticleDOI
TL;DR: The pathological findings have provided evidence of the safety and effectiveness of carbon beam therapy in the treatment of NSCLC and confirmed an outstanding tumor response with limited pulmonary fibrosis.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications.
Abstract: Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.

12 citations

Journal ArticleDOI
TL;DR: It is demonstrated that highly conformal radiation can be reproducibly delivered to a small volume of rodent lung on a widely available clinical unit and the radiation-induced lung injury can be detected as early as 2 months after radiation with perfusion MRI.
Abstract: Purpose To evaluate a helical tomotherapy–based rodent radiosurgery platform that reproduces human image-guided radiosurgery treatment to study radiobiologic effects of stereotactic radiosurgery on lung tissues using functional magnetic resonance imaging (MRI). Methods and Materials Hypofractionated radisourgery (20 Gy × 3) was delivered to the right lung of three New Zealand rabbits using Helical TomoTherapy with MVCT image guidance. Contrast-enhanced MR perfusion, hyperpolarized helium-3 MR ventilation, and CT were obtained before radiation and monthly for 4 months after radiation. All MRI was performed on a 1.5-T whole-body scanner with broad-band capabilities. Results Precise dose delivery to 1.6 cc of the lower right lung was achieved without additional immobilization. No deficits were detected at baseline with respect to perfusion and ventilation. Lung perfusion deficits in the irradiated lung regions began at 2 months after radiation and worsened with time. No ventilation deficits were observed after radiation. Decrease in lung CT density in irradiated regions was observed after radiation, but the changes were less significant than those in perfusion MRI. Conclusions We demonstrated that highly conformal radiation can be reproducibly delivered to a small volume of rodent lung on a widely available clinical unit. The radiation-induced lung injury can be detected as early as 2 months after radiation with perfusion MRI. The primary pattern of injury agrees with previously reported endothelial damage to radiosurgical radiation doses. This experimental design provides a cost-effective methodology for producing radiosurgical injuries in rodents that reproduces current human treatments for studying radiation injury and agents that might affect it.

11 citations

Journal ArticleDOI
TL;DR: It is suggested that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Abstract: Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.

10 citations

Network Information
Related Topics (5)
Radiation therapy
76.3K papers, 2M citations
79% related
Lung cancer
89.3K papers, 2.4M citations
74% related
Cervical cancer
34.6K papers, 971.3K citations
73% related
Breast cancer
214.3K papers, 6.4M citations
70% related
Epidermal growth factor receptor
20.5K papers, 1M citations
70% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202117
202022
201922
201810
201718
201615