scispace - formally typeset
Search or ask a question
Topic

Radiative transfer

About: Radiative transfer is a research topic. Over the lifetime, 43287 publications have been published within this topic receiving 1176539 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The parallel implementation of the generalized stellar atmosphere and non-LTE (NLTE) radiative transfer computer program PHOENIX is described and the parallel algorithms developed for radiativeTransfer, spectral line opacity, and NLTE opacity and rate calculations are discussed.
Abstract: We describe the parallel implementation of our generalized stellar atmosphere and non-LTE (NLTE) radiative transfer computer program PHOENIX. We discuss the parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. Our implementation uses a multiple instruction-multiple data design based on a relatively small number of MPI library calls. We report the results of test calculations on a number of different parallel computers and discuss the results of scalability tests.

262 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that a previously proposed model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes.
Abstract: We demonstrate that a previously proposed model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes. Indeed, this model fulfills many essential requirements: (i) it takes both velocity changes and the speed dependences of the pressure-broadening and -shifting coefficients into account. (ii) It leads to accurate descriptions of the line shapes of very different molecular systems. Tests made for pure H2, CO2 and O2 and for H2O diluted in N2 show that residuals are down to ≃ 0.2 % of the peak absorption, (except for the untypical system of H2 where a maximum residual of ±3% is reached), thus fulfilling the precision requirements of the most demanding remote sensing experiments. (iii) It is based on a limited set of parameters for each absorption line that have known dependences on pressure and can thus be stored in databases. (iv) Its calculation requires very reasonable computer costs, only a few times higher than that of a usual Voigt profile. Its inclusion in radiative transfer codes will thus induce bearable CPU time increases. (v) It can be extended in order to take line-mixing effects into account, at least within the so-called first-order approximation.

262 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a critical analysis of the usual interpretation of multicolour disc model parameters for black hole candidates in terms of the inner radius and temperature of the accretion disc.
Abstract: We present a critical analysis of the usual interpretation of the multicolour disc model parameters for black hole candidates in terms of the inner radius and temperature of the accretion disc. Using a self-consistent model for the radiative transfer and the vertical temperature structure in a Shakura–Sunyaev disc, we simulate the observed disc spectra, taking into account Doppler blurring and gravitational redshift, and fit them with multicolour models. We show not only that such a model systematically underestimates the value of the inner-disc radius, but that when the accretion rate and/or the energy dissipated in the corona are allowed to change, the inner edge of the disc, as inferred from the multicolour model, appears to move even when it is in fact fixed at the innermost stable orbit.

262 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if tropical tropopause cirrus clouds lie above convective anvils with tops above about 13km, net radiative cooling from the cirrus can be produced that is large enough to offset significant subsidence heating, even at the lowest temperatures observed in the tropics.
Abstract: If tropical tropopause cirrus lie above convective anvils with tops above about 13km, then net radiative cooling from the cirrus can be produced that is large enough to offset significant subsidence heating, even at the lowest temperatures observed in the tropics. Cirrus clouds near the tropopause are strongly heated by radiation unless they lie above convective anvil clouds. Radiative relaxation in the tropical troposphere is slow above about 14km unless clouds are present. Radiative cooling of tropopause cirrus may be important in processes that dehydrate air before it enters the stratosphere.

262 citations

Journal ArticleDOI
11 Jan 1974-Science
TL;DR: In this paper, the radiative transfer equation is solved analytically in the two-stream approximation, and it is found that the sign of the heating is independent of optical thickness of an aerosol layer and the amount of heating approaches a finite limit with increasing thickness of a layer.
Abstract: To determine the effects of atmospheric aerosols on the radiative heating of the earth-atmosphere system, the radiative transfer equation is solved analytically in the two-stream approximation. It is found that the sign of the heating is independent of optical thickness of an aerosol layer and the amount of heating approaches a finite limit with increasing thickness of a layer. Limitations of the two-stream approximation are discussed.

262 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
85% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Turbulence
112.1K papers, 2.7M citations
82% related
Dark matter
41.5K papers, 1.5M citations
82% related
Electron
111.1K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,706
20223,291
20211,335
20201,335
20191,429
20181,409