scispace - formally typeset
Search or ask a question
Topic

Radiative transfer

About: Radiative transfer is a research topic. Over the lifetime, 43287 publications have been published within this topic receiving 1176539 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of radiative heat transfer in dispersed media is carried out, focusing on practical applications dealing with several types of particulate media which play an important role in a number of industrial processes.
Abstract: The aim of this paper is to carry out a review of radiative heat transfer in dispersed media. Firstly, the solution of the governing equations for radiative transfer in such media as well as the theoretical basis for the modelling of their radiative properties are briefly recalled and discussed. Thereafter, emphasis is placed on practical applications dealing with several types of particulate media which play an important role in a number of industrial processes. Radiative property predictive models as well as studies dealing with property experimental determination are examined and discussed.

246 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional model of AGN dust tori is extensively investigated, where the torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account.
Abstract: Context. Tori of Active Galactic Nuclei (AGN) are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the surrounding hot gas as well as by the energetic (UV/optical) radiation from the accretion disk, the dust is often assumed to be distributed in clouds. Aims. A new three-dimensional model of AGN dust tori is extensively investigated. The torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. Methods. Radiative transfer calculations with the help of the three-dimensional Monte Carlo radiative transfer code MC3D are used in order to simulate spectral energy distributions as well as surface brightness distributions at various wavelengths. In a second step, interferometric visibilities for various inclination as well as position angles and baselines are calculated, which can be used to directly compare our models to interferometric observations with the MIDI instrument. Results. We find that the radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 µm-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the dust distribution. With this explanation, failure and success of previous modelling efforts of clumpy tori can be understood. The main reason for this outcome are shadowing effects of clouds within the central region. We underline this result with the help of several parameter variations. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.

246 citations

Journal ArticleDOI
TL;DR: In this article, a forward model is proposed to predict light propagation in highly scattering media that contain void-like inclusions, which is based on the time-independent equation of radiative transfer.
Abstract: Optical tomography is a novel imaging modality that is employed to reconstruct cross-sectional images of the optical properties of highly scattering media given measurements performed on the surface of the medium. Recent advances in this field have mainly been driven by biomedical applications in which near-infrared light is used for transillumination and reflectance measurements of highly scattering biological tissues. Many of the reconstruction algorithms currently utilized for optical tomography make use of model-based iterative image reconstruction (MOBIIR) schemes. The imaging problem is formulated as an optimization problem, in which an objective function is minimized. In the simplest case the objective function is a normalized-squared error between measured and predicted data. The predicted data are obtained by using a forward model that describes light propagation in the scattering medium given a certain distribution of optical properties. In part I of this two-part study, we presented a forward model that is based on the time-independent equation of radiative transfer. Using experimental data we showed that this transport-theory-based forward model can accurately predict light propagation in highly scattering media that contain void-like inclusions. In part II we focus on the details of our image reconstruction scheme (inverse model). A crucial component of this scheme involves the efficient and accurate determination of the gradient of the objective function with respect to all optical properties. This calculation is performed using an adjoint differentiation algorithm that allows for fast calculation of this gradient. Having calculated this gradient, we minimize the objective function with a gradient-based optimization method, which results in the reconstruction of the spatial distribution of scattering and absorption coefficients inside the medium. In addition to presenting the mathematical and numerical background of our code, we present reconstruction results based on experimentally obtained data from highly scattering media that contain void-like regions. These types of media play an important role in optical tomographic imaging of the human brain and joints.

246 citations

Journal ArticleDOI
TL;DR: In this paper, a new implementation of radiation hydrodynamics (RHD) in the adaptive mesh refinement (AMR) code RAMSES is presented, where the multi-group radiative transfer (RT) is performed on the AMR grid with a first-order Godunov method using the M1 closure for the Eddington tensor.
Abstract: We present a new implementation of radiation hydrodynamics (RHD) in the adaptive mesh refinement (AMR) code RAMSES. The multi-group radiative transfer (RT) is performed on the AMR grid with a first-order Godunov method using the M1 closure for the Eddington tensor, and is coupled to the hydrodynamics via non-equilibrium thermochemistry of hydrogen and helium. This moment-based approach has the large advantage that the computational cost is independent of the number of radiative sources - it can even deal with continuous regions of emission such as bound-free emission from gas. As it is built directly into RAMSES, the RT takes natural advantage of the refinement and parallelization strategies already in place. Since we use an explicit advection solver for the radiative transport, the time step is restricted by the speed of light - a severe limitation that can be alleviated using the so--called "reduced speed of light" approximation. We propose a rigorous framework to assess the validity of this approximation in various conditions encountered in cosmology and galaxy formation. We finally perform with our newly developed code a complete suite of RHD tests, comparing our results to other RHD codes. The tests demonstrate that our code performs very well and is ideally suited for exploring the effect of radiation on current scenarios of structure and galaxy formation.

246 citations

Journal ArticleDOI
TL;DR: In this article, the structure of a photodissociation region (PDR) in a cloud of finite size that is bathed in an external dissociating radiation field was derived.
Abstract: In this series of papers, we study the structure of the atomic-to-molecular transition in the giant atomic-molecular complexes that are the repositories of most molecular gas in galaxies, with the ultimate goal of attaining a better understanding of what determines galaxies' molecular content. Here we derive an approximate analytic solution for the structure of a photodissociation region (PDR) in a cloud of finite size that is bathed in an external dissociating radiation field. Our solution extends previous work, which with few exceptions has been restricted to a one-dimensional treatment of the radiation field. We show that our analytic results compare favorably to exact numerical calculations in the one-dimensional limit. However, our more general geometry provides a more realistic representation than a semi-infinite slab for atomic-molecular complexes exposed to the interstellar radiation field, particularly in environments such as low-metallicity dwarf galaxies, where the curvature and finite size of the atomic envelope cannot be neglected. For clouds that are at least 20% molecular, we obtain analytic expressions for the molecular fraction in terms of properties of the gas and radiation field that are accurate to tens of percent, while for clouds of lower molecular content we obtain upper limits. As a side benefit, our analysis helps to clarify when self-shielding is the dominant process in H2 formation, and under what circumstances shielding by dust makes a significant contribution.

246 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
85% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Turbulence
112.1K papers, 2.7M citations
82% related
Dark matter
41.5K papers, 1.5M citations
82% related
Electron
111.1K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,706
20223,291
20211,335
20201,335
20191,429
20181,409