scispace - formally typeset
Search or ask a question
Topic

Radiative transfer

About: Radiative transfer is a research topic. Over the lifetime, 43287 publications have been published within this topic receiving 1176539 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ) to agree remarkably well with the adjusted change in cloud radiative forcing.
Abstract: This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contri...

217 citations

Journal ArticleDOI
TL;DR: In this article, simple recipes to compute the radiative energy balance in the dominant spectral lines under solar chromospheric conditions were derived using detailed calculations in time-dependent and 2D MHD snapshots.
Abstract: Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. We look for simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.

217 citations

Journal ArticleDOI
Peter Woitke1
TL;DR: In this paper, a frequency-dependent Monte Carlo radiative transfer model for dust-driven winds of oxygen-rich AGB stars is presented, which can explain the observed magnitudes of mass loss rates and outflow velocities.
Abstract: Aims. It is commonly assumed that the massive winds of AGB stars are dust-driven and pulsation-enhanced. However, detailed frequency-dependent dynamical models that can explain the observed magnitudes of mass loss rates and outflow velocities have been published so far only for C-stars. This letter reports on first results of similar models for oxygen-rich AGB stars. The aim is to provide a better understanding of the wind driving mechanism, the dust condensation sequence, and the role of pulsations. Methods. New dynamical models for dust-driven winds of oxygen-rich AGB stars are presented which include frequency-dependent Monte Carlo radiative transfer by means of a sparse opacity distribution technique and a time-dependent treatment of the nucleation, growth and evaporation of inhomogeneous dust grains composed of a mixture of Mg 2 SiO 4 , SiO 2 , Al 2 O 3 , TiO 2 , and solid Fe. Results. The frequency-dependent treatment of radiative transfer reveals that the gas is cold close to the star (700-900 K at 1.5-2 R*) which facilitates the nucleation process. The dust temperatures are strongly material-dependent, with differences as large as 1000 K for different pure materials, which has an important influence on the dust formation sequence. Two dust layers are formed in the dynamical models: almost pure glassy Al 2 O 3 close to the star (r ≥ 1.5 R*) and the more opaque Fe-poor Mg-Fe-silicates further out. Solid Fe and Fe-rich silicates are found to be the only condensates that can efficiently absorb the stellar light in the near IR. Consequently, they play a key role in the wind driving mechanism and act as a thermostat. Only small amounts of Fe can be incorporated into the grains, because otherwise the grains become too hot. Thus, the models reveal almost no mass loss, and no dust shells. Conclusions. The observed dust sequence Al 2 O 3 → Fe-poor Mg-Fe-silicates for oxygen-rich AGB stars having low -> high mass loss rates is in agreement with the presented model and can be understood as follows: Al 2 O 3 is present in the extended atmosphere of the star below the wind acceleration region, also without mass loss. The Mg-Fe-silicates form further out and, therefore, their amount depends on the mass loss rate. The driving mechanism of oxygen-rich AGB stars is still an unsolved puzzle.

216 citations

Journal ArticleDOI
TL;DR: In this article, detailed radiative transfer calculations of Comptonized X-ray and γ-ray radiation in a hot pair plasma above a cold accretion disk are performed using two independent codes and methods.
Abstract: For the first time, detailed radiative transfer calculations of Comptonized X-ray and γ-ray radiation in a hot pair plasma above a cold accretion disk are performed using two independent codes and methods. The simulations include both energy and pair balance as well as reprocessing of the X- and γ-rays by the cold disk. We study both plane-parallel coronae as well as active dissipation regions having shapes of hemispheres and pill boxes located on the disk surface. It is shown, contrary to earlier claims, that plane-parallel coronae in pair balance have difficulties in self-consistently reproducing the ranges of 2-20 keV spectral slopes, high-energy cutoffs, and compactnesses inferred from observations of type 1 Seyfert galaxies. Instead, the observations are consistent with the X-rays coming from a number of individual active regions located on the surface of the disk. A number of effects such as anisotropic Compton scattering, the reflection hump, feedback to the soft photon source by reprocessing, and an active region in pair equilibrium all conspire to produce the observed ranges of X-ray slopes, high-energy cutoffs, and compactnesses. The spread in spectral X-ray slopes can be caused by a spread in the properties of the active regions such as their compactnesses and their elevations above the disk surface. Simplified models invoking isotropic Comptonization in spherical clouds are no longer sufficient when interpreting the data.

216 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
85% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Turbulence
112.1K papers, 2.7M citations
82% related
Dark matter
41.5K papers, 1.5M citations
82% related
Electron
111.1K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,706
20223,291
20211,335
20201,335
20191,429
20181,409