scispace - formally typeset
Search or ask a question
Topic

Radiative transfer

About: Radiative transfer is a research topic. Over the lifetime, 43287 publications have been published within this topic receiving 1176539 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a broadband simplified analytical version of the Solis model is presented, which is based on radiative transfer calculations and the Lambert-Beer relation, and the accuracy for the clear sky beam, global and diffuse irradiance components compared to the original model are, respectively, 1, 2% and 5% with no bias.

198 citations

Journal ArticleDOI
TL;DR: In this article, a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M ☉), star-forming molecular cloud cores is presented.
Abstract: We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M ☉), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for ~100 M ☉ cores with many thermal Jeans masses of material. We also demonstrate that a ~40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

198 citations

Journal ArticleDOI
TL;DR: In this article, the Earth's energy balance since 1950 was examined and the results that can be obtained without using global climate models were obtained using only measurements and radiative transfer models.
Abstract: [1] We examine the Earth's energy balance since 1950, identifying results that can be obtained without using global climate models. Important terms that can be constrained using only measurements and radiative transfer models are ocean heat content, radiative forcing by long-lived trace gases, and radiative forcing from volcanic eruptions. We explicitly consider the emission of energy by a warming Earth by using correlations between surface temperature and satellite radiant flux data and show that this term is already quite significant. About 20% of the integrated positive forcing by greenhouse gases and solar radiation since 1950 has been radiated to space. Only about 10% of the positive forcing (about 1/3 of the net forcing) has gone into heating the Earth, almost all into the oceans. About 20% of the positive forcing has been balanced by volcanic aerosols, and the remaining 50% is mainly attributable to tropospheric aerosols. After accounting for the measured terms, the residual forcing between 1970 and 2000 due to direct and indirect forcing by aerosols as well as semidirect forcing from greenhouse gases and any unknown mechanism can be estimated as −1.1 ± 0.4 W m−2 (1σ). This is consistent with the Intergovernmental Panel on Climate Change's best estimates but rules out very large negative forcings from aerosol indirect effects. Further, the data imply an increase from the 1950s to the 1980s followed by constant or slightly declining aerosol forcing into the 1990s, consistent with estimates of trends in global sulfate emissions. An apparent increase in residual forcing in the late 1990s is discussed.

198 citations

Proceedings ArticleDOI
Chul Park1
01 Jun 1984
TL;DR: In this paper, the dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aero-assisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for.
Abstract: The dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aeroassisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for. From the thermodynamic properties so determined, radiative power emission is calculated using an existing code. The resulting radiation characteristics are compared with the available experimental data. Chemical parameters are varied to Investigate their effect on the radiation characteristics. It is concluded that the current knowledge of rate chemistry leads to a factor-of-4 uncertainty In nonequilibrium radiation intensities. The chemical parameters that must be studied to Improve the accuracy are identified.

198 citations

Book ChapterDOI
01 Jan 2008
TL;DR: In this paper, the scalar and vector radiative transfer equations in one vertical dimension may be solved in a number of ways, including doubling-addition, discrete ordinates approach, successive orders of scattering method, Gauss-Seidel iteration, and Monte Carlo approach.
Abstract: The modern treatment of the radiative transfer equation (RTE) in plane-parallel media dates back to the pioneering work by Ambartsumian and Chandrasekhar in the 1940s (Chandrasekhar, 1960;Ambartsumian, 1961). Using a formulation in terms of the Stokes vector for polarized light, Chandrasekhar was able to solve completely the polarization problem for an atmosphere with Rayleigh scattering, and benchmark calculations from the 1950s are still appropriate today (Coulson et al., 1960). The scalar (intensity-only) and vector (with polarization) radiative transfer equations in one vertical dimension may be solved in a number of ways. These include the doubling-adding method, the discrete ordinates approach, the successive orders of scattering method, Gauss-Seidel iteration, and (not least) the Monte Carlo approach. For a review of solution methods, see for example (Lenoble, 1985). Most solution methods for scalar and vector RTEs divide into two camps: the doubling/adding approach and the discrete ordinate method. For descriptions of the former, see for example (Hansen and Travis, 1974;de Haan et al., 1987;Hovenier et al., 2004). The well-known scalar DISORT discrete ordinate model was developed in the 1980s and released for general use in plane-parallel multi-layer multiple scattering media (Stamnes et al., 1988a); this was extended to the vector model VDISORT in the 1990s (Schulz and Stamnes, 2000).

198 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
85% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Turbulence
112.1K papers, 2.7M citations
82% related
Dark matter
41.5K papers, 1.5M citations
82% related
Electron
111.1K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,706
20223,291
20211,335
20201,335
20191,429
20181,409