scispace - formally typeset
Search or ask a question
Topic

Radiative transfer

About: Radiative transfer is a research topic. Over the lifetime, 43287 publications have been published within this topic receiving 1176539 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new range of aerosol radiative forcing over the industrial era is provided based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations, to constrain the forcing from aerosol‐radiation interactions.
Abstract: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth’s radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable and arguable lines of evidence, including modelling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of −1.60 to −0.65 W m−2, or −2.0 to −0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted towards more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.

332 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used global, multi-year observations of clouds, the atmosphere, and the surface to calculate global shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere and at the surface at a resolution of 280 km and 3 hours for every third month from April 1985 to January 1989.
Abstract: We use global, multiyear observations of the properties of clouds, the atmosphere, and the surface to calculate global shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere and at the surface at a resolution of 280 km and 3 hours for every third month from April 1985 to January 1989. Our validation studies suggest that the specification of cloud effects is no longer the dominant uncertainty in reconstructing the radiative fluxes at the top of atmosphere and at the surface. Rather cloud property uncertainties are now roughly equal contributors to the flux uncertainty, along with surface and atmospheric properties. The resulting SW and LW flux data sets suggest the following conclusions: (1) The net SW heating of Earth appears predominantly at the surface, whereas the net LW cooling arises predominantly from the atmosphere. The net cooling effect of clouds on top of atmospheric radiation appears primarily at the surface rather than in the atmosphere. (2) Clouds have almost no net effect on the global mean radiation balance of the atmosphere, but they enhance the latitudinal gradient in the LW cooling and reinforce the radiative forcing for the mean atmospheric circulation. Clouds act to mute seasonal contrasts however. (3) Clouds enhance the land-ocean contrasts of the atmospheric cooling, reinforcing the growth of standing eddy motions; but reduce land-ocean contrasts of the surface heating.

331 citations

Journal ArticleDOI
TL;DR: The first large-scale radiative transfer simulation of cosmic reionization was presented in this paper, in a simulation volume of (100 h 1 Mpc) 3, which is more than a 2 orders of magnitude improvement over previous simulations.
Abstract: We present the first large-scale radiative transfer simulat ions of cosmic reionization, in a simulation volume of (100 h 1 Mpc) 3 . This is more than a 2 orders of magnitude improvement over previous simulations. We achieve this by combining the results from extremely large, cosmological, N-body simulations with a new, fast and effici ent code for 3D radiative transfer, C 2 -Ray, which we have recently developed. These simulations allow us to do the first numerical studies of the large-scale structure of reionization w hich at the same time, and crucially, properly take account of the dwarf galaxy ionizing sources which are primarily responsible for reionization. In our realization, reionization starts around z � 21, and final overlap occurs by z � 11. The resulting electron-scattering optical depth is in goo d agreement with the firstyear WMAP polarization data. We show that reionization clearly proceeded in an inside-out fashion, with the high-density regions being ionized earli er, on average, than the voids. Ionization histories of smaller-size (5 to 10 comoving Mpc) subregions exabit a large scatter about the mean and do not describe the global reionization history well. This is true even when these subregions are at the mean density of the universe, which shows that small-box simulations of reionization have little predictive power for the evolut ion of the mean ionized fraction. The minimum reliable volume size for such predictions is � 30 Mpc. We derive the power-spectra of the neutral, ionized and total gas density fields and show t hat there is a significant boost of the density fluctuations in both the neutral and the ionized c omponents relative to the total at arcminute and larger scales. We find two populations of H II re gions according to their size, numerous, mid-sized (� 10 Mpc) regions and a few, rare, very large regions tens of Mpc in size. Thus, local overlap on fairly large scales of tens of Mp c is reached by z � 13, when our volume is only about 50% ionized, and well before the global overlap. We derive the statistical distributions of the ionized fraction and ionized gas densi ty at various scales and for the first time show that both distributions are clearly non-Gaussian. All these quantities are critical for predicting and interpreting the observational signals from reionization from a variety of observations like 21-cm emission, Ly-α emitter statistics, Gunn-Peterson optical depth and small-scale CMB secondary anisotropies due to patchy reionization.

331 citations

Journal ArticleDOI
TL;DR: In this article, it was suggested that the mechanism is X-ray synchrotron emission in a situation in which the shock wave is cosmic-ray-dominated so that the electron energy spectrum flattens at high energy.
Abstract: The presumed Wolf-Rayet star progenitors of Type Ib/c supernovae have fast, low-density winds, and the shock waves generated by the supernova interaction with the wind are not expected to be radiative at typical times of observation. The injected energy spectrum of radio-emitting electrons typically has an observed index p = 3, which is suggestive of acceleration in cosmic-ray-dominated shocks. The early, absorbed part of the radio light curves can be attributed to synchrotron self-absorption, which leads to constraints on the magnetic field in the emitting region and on the circumstellar density. The range of circumstellar densities inferred from the radio emission is somewhat broader than that for Galactic Wolf-Rayet stars, if similar efficiencies of synchrotron emission are assumed in the extragalactic supernovae. For the observed and expected ranges of circumstellar densities to roughly overlap, a high efficiency of magnetic field production in the shocked region is required (B ≈ 0.1). For the expected densities around a Wolf-Rayet star, a nonthermal mechanism is generally required to explain the observed X-ray luminosities of Type Ib/c supernovae. Inverse Compton emission is a candidate for the emission, if the observations are near optical maximum. In other cases we suggest that the mechanism is X-ray synchrotron emission in a situation in which the shock wave is cosmic-ray-dominated so that the electron energy spectrum flattens at high energy. More comprehensive X-ray observations of a Type Ib/c supernova are needed to determine whether this suggestion is correct.

331 citations

Journal ArticleDOI
TL;DR: The use of the Monte Carlo method in radiative heat transfer is reviewed in this paper, where surface-surface, enclosure, and participating media problems are considered, as well as the effects of using parallel algorithms.
Abstract: The use of the Monte Carlo method in radiative heat transfer is reviewed. The review covers surface-surface, enclosure, and participating media problems. Discussio. is included of research on the fundamentals of the method and on applications to surface-surface interchange in enclosures, exchange between surfaces with roughness characteristics, determination of configuration factors, inverse design, transfer through packed beds and fiber layers, participating media, scattering, hybrid methods, spectrally dependent problems including media with line structure, effects of using parallel algorithms, practical applications, and extensions of the method. Conclusions are presented on needed future work and the place of Monte Carlo techniques in radiative heat transfer computations

331 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
85% related
Magnetic field
167.5K papers, 2.3M citations
84% related
Turbulence
112.1K papers, 2.7M citations
82% related
Dark matter
41.5K papers, 1.5M citations
82% related
Electron
111.1K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,706
20223,291
20211,335
20201,335
20191,429
20181,409