scispace - formally typeset
Topic

Radical

About: Radical is a(n) research topic. Over the lifetime, 38907 publication(s) have been published within this topic receiving 1165732 citation(s).
Papers
More filters

Journal ArticleDOI
Abstract: Kinetic data for the radicals H⋅ and ⋅OH in aqueous solution,and the corresponding radical anions, ⋅O− and eaq−, have been critically pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes.

8,757 citations



Journal ArticleDOI
TL;DR: It seems possible that one factor in aging may be related to deleterious side attacks of free radicals (which are normally produced in the course of cellular metabolism) on cell constituents.
Abstract: The phenomenon of growth, decline and death—aging—has been the source of considerable speculation (1, 8, 10). This cycle seems to be a more or less direct function of the metabolic rate and this in turn depends on the species (animal or plant) on which are superimposed the factors of heredity and the effects of the stresses and strains of life—which alter the metabolic activity. The universality of this phenomenon suggests that the reactions which cause it are basically the same in all living things. Viewing this process in the light of present day free radical and radiation chemistry and of radiobiology, it seems possible that one factor in aging may be related to deleterious side attacks of free radicals (which are normally produced in the course of cellular metabolism) on cell constituents.* Irradiation of living things induces mutation, cancer, and aging (9). Inasmuch as these also arise spontaneously in nature, it is natural to inquire if the processes might not be similar. It is believed that one mechanism of irradiation effect is through liberation of OH and HO 2 radicals (12). There is evidence, although indirect, that these two highly active free radicals are produced normally in living systems. In the first place, free radicals are present in living cells; this was recently demonstrated in vivo by a paramagnetic resonance absorption method (3). Further, it was shown that the concentration of free radicals increased with increasing metabolic activity in conformity with the postulates set forth some years ago that free radicals were involved in biologic oxidation-reduction reactions (11, 13). Are some of these free radicals OH and/or HO2, or radicals of a similar high order of reactivity, and where might they arise in the cell? The most likely source of OH and HO2 radicals, at least in the animal cell, would be the interaction of the respiratory enzymes involved

7,455 citations


Journal ArticleDOI
TL;DR: It is proposed that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO under pathological conditions by preventing the formation of peroxynitrite.
Abstract: Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite.

6,897 citations



Network Information
Related Topics (5)
Photochemistry

1 papers

93% related
Reaction rate constant

42.9K papers, 1M citations

93% related
Singlet oxygen

10.5K papers, 349.9K citations

90% related
Kinetics

12K papers, 232.7K citations

90% related
Chemistry

5 papers, 23 citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202230
2021765
2020765
2019706
2018700
2017709

Top Attributes

Show by:

Topic's top 5 most impactful authors

Ronald P. Mason

172 papers, 9.6K citations

Martyn C. R. Symons

162 papers, 2.1K citations

John C. Walton

146 papers, 2.2K citations

Roger Atkinson

101 papers, 7.2K citations

Michael J. Davies

66 papers, 5.1K citations