scispace - formally typeset
Search or ask a question
Topic

Raman spectroscopy

About: Raman spectroscopy is a research topic. Over the lifetime, 122605 publications have been published within this topic receiving 2891083 citations. The topic is also known as: Raman Spectrum Analysis & spectrum Analysis, Raman.


Papers
More filters
Journal ArticleDOI
TL;DR: The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates.
Abstract: The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir-Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.

603 citations

Journal ArticleDOI
TL;DR: Scan scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions display the honeycomb structure expected for the full hexagonal symmetry of an isolated graphene monolayer.
Abstract: We present scanning tunneling microscopy (STM) images of single-layer graphene crystals examined under ultrahigh vacuum conditions. The samples, with lateral dimensions on the micrometer scale, were prepared on a silicon dioxide surface by direct exfoliation of crystalline graphite. The single-layer films were identified by using Raman spectroscopy. Topographic images of single-layer samples display the honeycomb structure expected for the full hexagonal symmetry of an isolated graphene monolayer. The absence of observable defects in the STM images is indicative of the high quality of these films. Crystals composed of a few layers of graphene also were examined. They exhibited dramatically different STM topography, displaying the reduced threefold symmetry characteristic of the surface of bulk graphite.

603 citations

Journal ArticleDOI
TL;DR: It is found that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles.
Abstract: Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured.

602 citations

Journal ArticleDOI
TL;DR: The interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, is uncovered, and it is suggested that the corresponding Raman peak measures the interlayer coupling.
Abstract: The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from 43 cm 1 in bulk graphite to 31 cm 1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

601 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of large-area, highly-crystalline monolayer N-doped graphene (NG) sheets via atmospheric-pressure chemical vapor deposition, yielding a unique Ndoping site composed of two quasi-adjacent substitutional nitrogen atoms within the same graphene sub-lattice (N2AA).
Abstract: Graphene is a two-dimensional network in which sp2-hybridized carbon atoms are arranged in two different triangular sub-lattices (A and B). By incorporating nitrogen atoms into graphene, its physico-chemical properties could be significantly altered depending on the doping configuration within the sub-lattices. Here, we describe the synthesis of large-area, highly-crystalline monolayer N-doped graphene (NG) sheets via atmospheric-pressure chemical vapor deposition, yielding a unique N-doping site composed of two quasi-adjacent substitutional nitrogen atoms within the same graphene sub-lattice (N2AA). Scanning tunneling microscopy and spectroscopy (STM and STS) of NG revealed the presence of localized states in the conduction band induced by N2AA-doping, which was confirmed by ab initio calculations. Furthermore, we demonstrated for the first time that NG could be used to efficiently probe organic molecules via a highly improved graphene enhanced Raman scattering.

601 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Thin film
275.5K papers, 4.5M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Nanoparticle
85.9K papers, 2.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,220
202210,775
20214,240
20204,764
20194,957
20184,893