scispace - formally typeset
Search or ask a question
Topic

Raman spectroscopy

About: Raman spectroscopy is a research topic. Over the lifetime, 122605 publications have been published within this topic receiving 2891083 citations. The topic is also known as: Raman Spectrum Analysis & spectrum Analysis, Raman.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy, and a simple equation for the determination of the point defect density in graphene via Raman spectroscopy is presented.
Abstract: We present a Raman study of Ar(+)-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that the ratio between the D and G peak intensities for a given defect density strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an inter-defect distance ~3nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity.

2,558 citations

Journal ArticleDOI
TL;DR: Anomalously intense Raman spectra of pyridine at a silver electrode was reported in this article, where the Raman spectrum was shown to have a high Raman intensity.
Abstract: Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Anomalously intense Raman spectra of pyridine at a silver electrode M. Grant Albrecht, and J. Alan Creighton J. Am. Chem. Soc., 1977, 99 (15), 5215-5217• DOI: 10.1021/ja00457a071 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 5, 2009

2,434 citations

Journal ArticleDOI
TL;DR: Comparison of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
Abstract: Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2−200 cm2/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.

2,322 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a scanning confocal approach to collect spectral data with spatial resolution, which allows them to directly compare Raman images with scanning force micrographs.
Abstract: We present Raman spectroscopy measurements on single- and few-layer graphene flakes. By using a scanning confocal approach, we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene splits into different peaks for the double-layer. These findings are explained using the double-resonant Raman model based on ab initio calculations of the electronic structure and of the phonon dispersion. We investigate the D line intensity and find no defects within the flake. A finite D line response originating from the edges can be attributed either to defects or to the breakdown of translational symmetry.

2,310 citations

Journal ArticleDOI
TL;DR: The Raman spectrum of hexagonal diamond (lonsdaleite) is distinct from that of the cubic diamond and allows it to be recognized as discussed by the authors, and the Raman line width varies with mode of preparation of the diamond and has been related to degree of structural order.
Abstract: As the technology for diamond film preparation by plasma-assisted CVD and related procedures has advanced, Raman spectroscopy has emerged as one of the principal characterization tools for diamond materials. Cubic diamond has a single Raman-active first order phonon mode at the center of the Brillouin zone. The presence of sharp Raman lines allows cubic diamond to be recognized against a background of graphitic carbon and also to characterize the graphitic carbon. Small shifts in the band wavenumber have been related to the stress state of deposited films. The effect is most noticeable in diamond films deposited on hard substrates such as alumina or carbides. The Raman line width varies with mode of preparation of the diamond and has been related to degree of structural order. The Raman spectrum of hexagonal diamond (lonsdaleite) is distinct from that of the cubic diamond and allows it to be recognized.

2,300 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Thin film
275.5K papers, 4.5M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Nanoparticle
85.9K papers, 2.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,220
202210,775
20214,240
20204,764
20194,957
20184,893