scispace - formally typeset
Search or ask a question
Topic

Raman spectroscopy

About: Raman spectroscopy is a research topic. Over the lifetime, 122605 publications have been published within this topic receiving 2891083 citations. The topic is also known as: Raman Spectrum Analysis & spectrum Analysis, Raman.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, spontaneous Raman spectra of tungstate (MeWO4) and molybdate (MeMoO4), with sheelite structure were investigated (Me=Ca, Sr, Ba, Pb).

458 citations

Journal ArticleDOI
TL;DR: In this article, the difference in the local environment of CO32−, NO3−, SO42−, and ClO4− in Mg/Al-hydrotalcite compared to the free anions was studied by infrared and Raman spectroscopy.
Abstract: The difference in the local environment of CO32−, NO3−, SO42−, and ClO4− in Mg/Al-hydrotalcite compared to the free anions was studied by infrared and Raman spectroscopy. In comparison to free CO32− a shift toward lower wavenumbers was observed. A band around 3000–3200 cm−1 has been attributed to the bridging mode H2O-CO32−. The IR spectrum of CO3− hydrotalcite clearly shows the split ν3 band around 1365 and 1400 cm−1 together with weak ν2 and ν4 modes around 870 and 667 cm−1. The ν1 mode is activated and observed as a weak band around 1012 cm−1. The Raman spectrum shows a strong ν1 band at 1053 cm−1 plus weak ν3 and ν4 modes around 1403 and 695 cm−1. The symmetry of the carbonate anions is lowered from D 3 h to C 2 s resulting in activation of the IR inactive ν1 mode around 1050–1060 cm−1. In addition, the ν3 shows a splitting of 30–60 cm−1. Although NO3-hydrotalcite has incorporated some CO32− the IR shows a strong ν3 mode at 1360 cm−1 with a weak band at 827 cm−1, and the ν4 band is observed at 667 cm−1, although it is largely obscured by the hydrotalcite lattice modes. The Raman spectrum shows a strong ν1 mode at 1044 cm−1 with a weaker ν4 band at 712 cm−1. The ν3 mode at 1355 cm−1 is obscured by a broad band due to the presence of CO32−. The symmetry of NO3− did not change when incorporated in hydrotalcite. The IR spectrum of SO4-hydrotalcite shows a strong ν3 at 1126, ν4 at 614 and a weak ν1 mode at 981 cm−1. The Raman spectrum is characterized by a strong ν1 mode at 982 cm−1 plus medium ν2 and ν4 bands at 453 and 611 cm−1; ν3 cannot be identified as a separate band, although a broad band can be seen around 1134 cm−1. The site symmetry of SO42− is lowered from T d to C 2 v . The distortion of ClO4− in the interlayer of hydrotalcite is reflected in the IR spectrum with both ν3 and ν4 bands split around 1096 and 1145 cm−1 and 626 and 635 cm−1, respectively. A weak ν1 band is observed at 935 cm−1. The Raman spectrum shows a strong ν1 mode at 936 cm−1 plus ν2 and ν4 bands at 461 and 626 cm−1, respectively. A ν3 mode cannot be clearly recognized, but a broad band is visible around 1110 cm−1. These data indicative a lowering of symmetry from T d to C s .

457 citations

Journal ArticleDOI
TL;DR: In this article, the preparation, isolation and rapid unambiguous characterization of large size ultrathin layers of MoS2, GaS, and GaSe deposited onto SiO2/Si substrates is reported.
Abstract: There has been emerging interest in exploring single-sheet 2D layered structures other than graphene to explore potentially interesting properties and phenomena. The preparation, isolation and rapid unambiguous characterization of large size ultrathin layers of MoS2, GaS, and GaSe deposited onto SiO2/Si substrates is reported. Optical color contrast is identified using reflection optical microscopy for layers with various thicknesses. The optical contrast of these thin layers is correlated with atomic force microscopy (AFM) and Raman spectroscopy to determine the exact thickness and to calculate number of the atomic layers present in the thin flakes and sheets. Collectively, optical microscopy, AFM, and Raman spectroscopy combined with Raman imaging data are analyzed to determine the thickness (and thus, the number of unit layers) of the MoS2, GaS, and GaSe ultrathin flakes in a fast, non-destructive, and unambiguous manner. These findings may enable experimental access to and unambiguous determination of layered chalcogenides for scientific exploration and potential technological applications.

456 citations

Journal ArticleDOI
TL;DR: In this paper, the double resonant (DR) Raman spectrum of graphene was calculated and the lines associated to both phonon-defect processes and two-phonons ones were determined.
Abstract: We calculate the double resonant (DR) Raman spectrum of graphene, and determine the lines associated to both phonon-defect processes, and two-phonons ones. Phonon and electronic dispersions reproduce calculations based on density functional theory corrected with GW. Electron-light, -phonon, and -defect scattering matrix elements and the electronic linewidth are explicitly calculated. Defect-induced processes are simulated by considering different kind of idealized defects. For an excitation energy of $\epsilon_L=2.4$ eV, the agreement with measurements is very good and calculations reproduce: the relative intensities among phonon-defect or among two-phonon lines; the measured small widths of the D, $D'$, 2D and $2D'$ lines; the line shapes; the presence of small intensity lines in the 1800, 2000 cm$^{-1}$ range. We determine how the spectra depend on the excitation energy, on the light polarization, on the electronic linewidth, on the kind of defects and on their concentration. According to the present findings, the intensity ratio between the $2D'$ and 2D lines can be used to determine experimentally the electronic linewidth. The intensity ratio between the $D$ and $D'$ lines depends on the kind of model defect, suggesting that this ratio could possibly be used to identify the kind of defects present in actual samples. Charged impurities outside the graphene plane provide an almost undetectable contribution to the Raman signal.

456 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
93% related
Graphene
144.5K papers, 4.9M citations
92% related
Thin film
275.5K papers, 4.5M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
91% related
Nanoparticle
85.9K papers, 2.6M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,220
202210,775
20214,240
20204,764
20194,957
20184,893