Topic

# Random effects model

About: Random effects model is a(n) research topic. Over the lifetime, 8388 publication(s) have been published within this topic receiving 438823 citation(s). The topic is also known as: random effects & random effect.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: It is concluded that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity, and one or both should be presented in publishedMeta-an analyses in preference to the test for heterogeneity.

Abstract: The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity.

21,054 citations

••

[...]

TL;DR: In this paper, a framework for efficient IV estimators of random effects models with information in levels which can accommodate predetermined variables is presented. But the authors do not consider models with predetermined variables that have constant correlation with the effects.

Abstract: This article develops a framework for efficient IV estimators of random effects models with information in levels which can accommodate predetermined variables Our formulation clarifies the relationship between the existing estimators and the role of transformations in panel data models We characterize the valid transformations for relevant models and show that optimal estimators are invariant to the transformation used to remove individual effects We present an alternative transformation for models with predetermined instruments which preserves the orthogonality among the errors Finally, we consider models with predetermined variables that have constant correlation with the effects and illustrate their importance with simulations

14,232 citations

•

[...]

28 Apr 2021

TL;DR: In this article, the authors proposed a two-way error component regression model for estimating the likelihood of a particular item in a set of data points in a single-dimensional graph.

Abstract: Preface.1. Introduction.1.1 Panel Data: Some Examples.1.2 Why Should We Use Panel Data? Their Benefits and Limitations.Note.2. The One-way Error Component Regression Model.2.1 Introduction.2.2 The Fixed Effects Model.2.3 The Random Effects Model.2.4 Maximum Likelihood Estimation.2.5 Prediction.2.6 Examples.2.7 Selected Applications.2.8 Computational Note.Notes.Problems.3. The Two-way Error Component Regression Model.3.1 Introduction.3.2 The Fixed Effects Model.3.3 The Random Effects Model.3.4 Maximum Likelihood Estimation.3.5 Prediction.3.6 Examples.3.7 Selected Applications.Notes.Problems.4. Test of Hypotheses with Panel Data.4.1 Tests for Poolability of the Data.4.2 Tests for Individual and Time Effects.4.3 Hausman's Specification Test.4.4 Further Reading.Notes.Problems.5. Heteroskedasticity and Serial Correlation in the Error Component Model.5.1 Heteroskedasticity.5.2 Serial Correlation.Notes.Problems.6. Seemingly Unrelated Regressions with Error Components.6.1 The One-way Model.6.2 The Two-way Model.6.3 Applications and Extensions.Problems.7. Simultaneous Equations with Error Components.7.1 Single Equation Estimation.7.2 Empirical Example: Crime in North Carolina.7.3 System Estimation.7.4 The Hausman and Taylor Estimator.7.5 Empirical Example: Earnings Equation Using PSID Data.7.6 Extensions.Notes.Problems.8. Dynamic Panel Data Models.8.1 Introduction.8.2 The Arellano and Bond Estimator.8.3 The Arellano and Bover Estimator.8.4 The Ahn and Schmidt Moment Conditions.8.5 The Blundell and Bond System GMM Estimator.8.6 The Keane and Runkle Estimator.8.7 Further Developments.8.8 Empirical Example: Dynamic Demand for Cigarettes.8.9 Further Reading.Notes.Problems.9. Unbalanced Panel Data Models.9.1 Introduction.9.2 The Unbalanced One-way Error Component Model.9.3 Empirical Example: Hedonic Housing.9.4 The Unbalanced Two-way Error Component Model.9.5 Testing for Individual and Time Effects Using Unbalanced Panel Data.9.6 The Unbalanced Nested Error Component Model.Notes.Problems.10. Special Topics.10.1 Measurement Error and Panel Data.10.2 Rotating Panels.10.3 Pseudo-panels.10.4 Alternative Methods of Pooling Time Series of Cross-section Data.10.5 Spatial Panels.10.6 Short-run vs Long-run Estimates in Pooled Models.10.7 Heterogeneous Panels.Notes.Problems.11. Limited Dependent Variables and Panel Data.11.1 Fixed and Random Logit and Probit Models.11.2 Simulation Estimation of Limited Dependent Variable Models with Panel Data.11.3 Dynamic Panel Data Limited Dependent Variable Models.11.4 Selection Bias in Panel Data.11.5 Censored and Truncated Panel Data Models.11.6 Empirical Applications.11.7 Empirical Example: Nurses' Labor Supply.11.8 Further Reading.Notes.Problems.12. Nonstationary Panels.12.1 Introduction.12.2 Panel Unit Roots Tests Assuming Cross-sectional Independence.12.3 Panel Unit Roots Tests Allowing for Cross-sectional Dependence.12.4 Spurious Regression in Panel Data.12.5 Panel Cointegration Tests.12.6 Estimation and Inference in Panel Cointegration Models.12.7 Empirical Example: Purchasing Power Parity.12.8 Further Reading.Notes.Problems.References.Index.

10,280 citations

•

[...]

01 Jan 1985

TL;DR: In this article, the authors present a model for estimating the effect size from a series of experiments using a fixed effect model and a general linear model, and combine these two models to estimate the effect magnitude.

Abstract: Preface. Introduction. Data Sets. Tests of Statistical Significance of Combined Results. Vote-Counting Methods. Estimation of a Single Effect Size: Parametric and Nonparametric Methods. Parametric Estimation of Effect Size from a Series of Experiments. Fitting Parametric Fixed Effect Models to Effect Sizes: Categorical Methods. Fitting Parametric Fixed Effect Models to Effect Sizes: General Linear Models. Random Effects Models for Effect Sizes. Multivariate Models for Effect Sizes. Combining Estimates of Correlation Coefficients. Diagnostic Procedures for Research Synthesis Models. Clustering Estimates of Effect Magnitude. Estimation of Effect Size When Not All Study Outcomes Are Observed. Meta-Analysis in the Physical and Biological Sciences. Appendix. References. Index.

9,755 citations

•

[...]

01 Jan 1999

TL;DR: In this paper, the authors proposed a multilevel regression model to estimate within-and between-group correlations using a combination of within-group correlation and cross-group evidence.

Abstract: Preface second edition Preface to first edition Introduction Multilevel analysis Probability models This book Prerequisites Notation Multilevel Theories, Multi-Stage Sampling and Multilevel Models Dependence as a nuisance Dependence as an interesting phenomenon Macro-level, micro-level, and cross-level relations Glommary Statistical Treatment of Clustered Data Aggregation Disaggregation The intraclass correlation Within-group and between group variance Testing for group differences Design effects in two-stage samples Reliability of aggregated variables Within-and between group relations Regressions Correlations Estimation of within-and between-group correlations Combination of within-group evidence Glommary The Random Intercept Model Terminology and notation A regression model: fixed effects only Variable intercepts: fixed or random parameters? When to use random coefficient models Definition of the random intercept model More explanatory variables Within-and between-group regressions Parameter estimation 'Estimating' random group effects: posterior means Posterior confidence intervals Three-level random intercept models Glommary The Hierarchical Linear Model Random slopes Heteroscedasticity Do not force ?01 to be 0! Interpretation of random slope variances Explanation of random intercepts and slopes Cross-level interaction effects A general formulation of fixed and random parts Specification of random slope models Centering variables with random slopes? Estimation Three or more levels Glommary Testing and Model Specification Tests for fixed parameters Multiparameter tests for fixed effects Deviance tests More powerful tests for variance parameters Other tests for parameters in the random part Confidence intervals for parameters in the random part Model specification Working upward from level one Joint consideration of level-one and level-two variables Concluding remarks on model specification Glommary How Much Does the Model Explain? Explained variance Negative values of R2? Definition of the proportion of explained variance in two-level models Explained variance in three-level models Explained variance in models with random slopes Components of variance Random intercept models Random slope models Glommary Heteroscedasticity Heteroscedasticity at level one Linear variance functions Quadratic variance functions Heteroscedasticity at level two Glommary Missing Data General issues for missing data Implications for design Missing values of the dependent variable Full maximum likelihood Imputation The imputation method Putting together the multiple results Multiple imputations by chained equations Choice of the imputation model Glommary Assumptions of the Hierarchical Linear Model Assumptions of the hierarchical linear model Following the logic of the hierarchical linear model Include contextual effects Check whether variables have random effects Explained variance Specification of the fixed part Specification of the random part Testing for heteroscedasticity What to do in case of heteroscedasticity Inspection of level-one residuals Residuals at level two Influence of level-two units More general distributional assumptions Glommary Designing Multilevel Studies Some introductory notes on power Estimating a population mean Measurement of subjects Estimating association between variables Cross-level interaction effects Allocating treatment to groups or individuals Exploring the variance structure The intraclass correlation Variance parameters Glommary Other Methods and Models Bayesian inference Sandwich estimators for standard errors Latent class models Glommary Imperfect Hierarchies A two-level model with a crossed random factor Crossed random effects in three-level models Multiple membership models Multiple membership multiple classification models Glommary Survey Weights Model-based and design-based inference Descriptive and analytic use of surveys Two kinds of weights Choosing between model-based and design-based analysis Inclusion probabilities and two-level weights Exploring the informativeness of the sampling design Example: Metacognitive strategies as measured in the PISA study Sampling design Model-based analysis of data divided into parts Inclusion of weights in the model How to assign weights in multilevel models Appendix. Matrix expressions for the single-level estimators Glommary Longitudinal Data Fixed occasions The compound symmetry models Random slopes The fully multivariate model Multivariate regression analysis Explained variance Variable occasion designs Populations of curves Random functions Explaining the functions 27415.2.4 Changing covariates Autocorrelated residuals Glommary Multivariate Multilevel Models Why analyze multiple dependent variables simultaneously? The multivariate random intercept model Multivariate random slope models Glommary Discrete Dependent Variables Hierarchical generalized linear models Introduction to multilevel logistic regression Heterogeneous proportions The logit function: Log-odds The empty model The random intercept model Estimation Aggregation Further topics on multilevel logistic regression Random slope model Representation as a threshold model Residual intraclass correlation coefficient Explained variance Consequences of adding effects to the model Ordered categorical variables Multilevel event history analysis Multilevel Poisson regression Glommary Software Special software for multilevel modeling HLM MLwiN The MIXOR suite and SuperMix Modules in general-purpose software packages SAS procedures VARCOMP, MIXED, GLIMMIX, and NLMIXED R Stata SPSS, commands VARCOMP and MIXED Other multilevel software PinT Optimal Design MLPowSim Mplus Latent Gold REALCOM WinBUGS References Index

9,571 citations