Topic

# Random field

About: Random field is a research topic. Over the lifetime, 12771 publications have been published within this topic receiving 348106 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

28 Jun 2001TL;DR: This work presents iterative parameter estimation algorithms for conditional random fields and compares the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.

Abstract: We present conditional random fields , a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.

13,190 citations

••

TL;DR: The authors propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations.

Abstract: The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limitation-no spatial information is taken into account. This causes the FM model to work only on well-defined images with low levels of noise; unfortunately, this is often not the the case due to artifacts such as partial volume effect and bias field distortion. Under these conditions, FM model-based methods produce unreliable results. Here, the authors propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown that the FM model is a degenerate version of the HMRF model. The advantage of the HMRF model derives from the way in which the spatial information is encoded through the mutual influences of neighboring sites. Although MRF modeling has been employed in MR image segmentation by other researchers, most reported methods are limited to using MRF as a general prior in an FM model-based approach. To fit the HMRF model, an EM algorithm is used. The authors show that by incorporating both the HMRF model and the EM algorithm into a HMRF-EM framework, an accurate and robust segmentation can be achieved. More importantly, the HMRF-EM framework can easily be combined with other techniques. As an example, the authors show how the bias field correction algorithm of Guillemaud and Brady (1997) can be incorporated into this framework to achieve a three-dimensional fully automated approach for brain MR image segmentation.

6,335 citations

••

01 Aug 1969TL;DR: In this article, a high-resolution frequency-wavenumber power spectral density estimation method was proposed, which employs a wavenumber window whose shape changes and is a function of the wave height at which an estimate is obtained.

Abstract: The output of an array of sansors is considered to be a homogeneous random field. In this case there is a spectral representation for this field, similar to that for stationary random processes, which consists of a superposition of traveling waves. The frequency-wavenumber power spectral density provides the mean-square value for the amplitudes of these waves and is of considerable importance in the analysis of propagating waves by means of an array of sensors. The conventional method of frequency-wavenumber power spectral density estimation uses a fixed-wavenumber window and its resolution is determined essentially by the beam pattern of the array of sensors. A high-resolution method of estimation is introduced which employs a wavenumber window whose shape changes and is a function of the wavenumber at which an estimate is obtained. It is shown that the wavenumber resolution of this method is considerably better than that of the conventional method. Application of these results is given to seismic data obtained from the large aperture seismic array located in eastern Montana. In addition, the application of the high-resolution method to other areas, such as radar, sonar, and radio astronomy, is indicated.

5,415 citations

•

01 Jan 1979

TL;DR: An electromagnetic pulse counter having successively operable, contact-operating armatures that are movable to a rest position, an intermediate position and an active position between the main pole and the secondary pole of a magnetic circuit.

Abstract: An electromagnetic pulse counter having successively operable, contact-operating armatures. The armatures are movable to a rest position, an intermediate position and an active position between the main pole and the secondary pole of a magnetic circuit.

4,897 citations

••

TL;DR: In this paper, the authors proposed an iterative method for scene reconstruction based on a non-degenerate Markov Random Field (MRF) model, where the local characteristics of the original scene can be represented by a nondegenerate MRF and the reconstruction can be estimated according to standard criteria.

Abstract: may 7th, 1986, Professor A. F. M. Smith in the Chair] SUMMARY A continuous two-dimensional region is partitioned into a fine rectangular array of sites or "pixels", each pixel having a particular "colour" belonging to a prescribed finite set. The true colouring of the region is unknown but, associated with each pixel, there is a possibly multivariate record which conveys imperfect information about its colour according to a known statistical model. The aim is to reconstruct the true scene, with the additional knowledge that pixels close together tend to have the same or similar colours. In this paper, it is assumed that the local characteristics of the true scene can be represented by a nondegenerate Markov random field. Such information can be combined with the records by Bayes' theorem and the true scene can be estimated according to standard criteria. However, the computational burden is enormous and the reconstruction may reflect undesirable largescale properties of the random field. Thus, a simple, iterative method of reconstruction is proposed, which does not depend on these large-scale characteristics. The method is illustrated by computer simulations in which the original scene is not directly related to the assumed random field. Some complications, including parameter estimation, are discussed. Potential applications are mentioned briefly.

4,490 citations