scispace - formally typeset
Search or ask a question
Topic

Random walk closeness centrality

About: Random walk closeness centrality is a research topic. Over the lifetime, 547 publications have been published within this topic receiving 57559 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three distinct intuitive notions of centrality are uncovered and existing measures are refined to embody these conceptions, and the implications of these measures for the experimental study of small groups are examined.
Abstract: The intuitive background for measures of structural centrality in social networks is reviewed and existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures are refined to embody these conceptions. Three measures are developed for each concept, one absolute and one relative measure of the centrality of positions in a network, and one reflecting the degree of centralization of the entire network. The implications of these measures for the experimental study of small groups is examined.

14,757 citations

Journal ArticleDOI
01 Mar 1977
TL;DR: A family of new measures of point and graph centrality based on early intuitions of Bavelas (1948) is introduced in this paper, which define centrality in terms of the degree to which a point falls on the shortest path between others and there fore has a potential for control of communication.
Abstract: A family of new measures of point and graph centrality based on early intuitions of Bavelas (1948) is introduced. These measures define centrality in terms of the degree to which a point falls on the shortest path between others and there fore has a potential for control of communication. They may be used to index centrality in any large or small network of symmetrical relations, whether connected or unconnected.

8,026 citations

Journal ArticleDOI
TL;DR: In this article, the rank orderings by the four networks whose analysis forms the heart of this paper were analyzed and compared to the rank ordering by the three centrality measures, i.e., betweenness, nearness, and degree.
Abstract: 2In an influential paper, Freeman (1979) identified three aspects of centrality: betweenness, nearness, and degree. Perhaps because they are designed to apply to networks in which relations are binary valued (they exist or they do not), these types of centrality have not been used in interlocking directorate research, which has almost exclusively used formula (2) below to compute centrality. Conceptually, this measure, of which c(ot, 3) is a generalization, is closest to being a nearness measure when 3 is positive. In any case, there is no discrepancy between the measures for the four networks whose analysis forms the heart of this paper. The rank orderings by the

4,482 citations

Journal ArticleDOI
TL;DR: New algorithms for betweenness are introduced in this paper and require O(n + m) space and run in O(nm) and O( nm + n2 log n) time on unweighted and weighted networks, respectively, where m is the number of links.
Abstract: Motivated by the fast‐growing need to compute centrality indices on large, yet very sparse, networks, new algorithms for betweenness are introduced in this paper. They require O(n + m) space and run in O(nm) and O(nm + n2 log n) time on unweighted and weighted networks, respectively, where m is the number of links. Experimental evidence is provided that this substantially increases the range of networks for which centrality analysis is feasible. The betweenness centrality index is essential in the analysis of social networks, but costly to compute. Currently, the fastest known algorithms require ?(n 3) time and ?(n 2) space, where n is the number of actors in the network.

4,190 citations

Journal ArticleDOI
TL;DR: This paper proposes generalizations that combine tie strength and node centrality, and illustrates the benefits of this approach by applying one of them to Freeman’s EIES dataset.
Abstract: Ties often have a strength naturally associated with them that differentiate them from each other. Tie strength has been operationalized as weights. A few network measures have been proposed for weighted networks, including three common measures of node centrality: degree, closeness, and betweenness. However, these generalizations have solely focused on tie weights, and not on the number of ties, which was the central component of the original measures. This paper proposes generalizations that combine both these aspects. We illustrate the benefits of this approach by applying one of them to Freeman’s EIES dataset.

2,713 citations


Network Information
Related Topics (5)
Social network
42.9K papers, 1.5M citations
75% related
Graph (abstract data type)
69.9K papers, 1.2M citations
74% related
Cluster analysis
146.5K papers, 2.9M citations
72% related
Node (networking)
158.3K papers, 1.7M citations
69% related
Server
79.5K papers, 1.4M citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20191
20188
201763
201667
201579