Topic
Ranking (information retrieval)
About: Ranking (information retrieval) is a(n) research topic. Over the lifetime, 21109 publication(s) have been published within this topic receiving 435130 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking.
Abstract: This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.
4,297 citations
Proceedings Article•
[...]
TL;DR: In this article, the authors proposed a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem, which is based on stochastic gradient descent with bootstrap sampling.
Abstract: Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive k-nearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.
3,424 citations
[...]
TL;DR: RankNet is introduced, an implementation of these ideas using a neural network to model the underlying ranking function, and test results on toy data and on data from a commercial internet search engine are presented.
Abstract: We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine.
2,501 citations
Book•
[...]
TL;DR: Three major approaches to learning to rank are introduced, i.e., the pointwise, pairwise, and listwise approaches, the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures are analyzed, and the performance of these approaches on the LETOR benchmark datasets is evaluated.
Abstract: This tutorial is concerned with a comprehensive introduction to the research area of learning to rank for information retrieval. In the first part of the tutorial, we will introduce three major approaches to learning to rank, i.e., the pointwise, pairwise, and listwise approaches, analyze the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures, evaluate the performance of these approaches on the LETOR benchmark datasets, and demonstrate how to use these approaches to solve real ranking applications. In the second part of the tutorial, we will discuss some advanced topics regarding learning to rank, such as relational ranking, diverse ranking, semi-supervised ranking, transfer ranking, query-dependent ranking, and training data preprocessing. In the third part, we will briefly mention the recent advances on statistical learning theory for ranking, which explain the generalization ability and statistical consistency of different ranking methods. In the last part, we will conclude the tutorial and show several future research directions.
2,244 citations
Proceedings Article•
[...]
TL;DR: RankBoost as discussed by the authors is an algorithm for combining preferences based on the boosting approach to machine learning, which can be applied to several applications, such as that of combining the results of different search engines, or the "collaborative filtering" problem of ranking movies for a user based on movie rankings provided by other users.
Abstract: We study the problem of learning to accurately rank a set of objects by combining a given collection of ranking or preference functions. This problem of combining preferences arises in several applications, such as that of combining the results of different search engines, or the "collaborative-filtering" problem of ranking movies for a user based on the movie rankings provided by other users. In this work, we begin by presenting a formal framework for this general problem. We then describe and analyze an efficient algorithm called RankBoost for combining preferences based on the boosting approach to machine learning. We give theoretical results describing the algorithm's behavior both on the training data, and on new test data not seen during training. We also describe an efficient implementation of the algorithm for a particular restricted but common case. We next discuss two experiments we carried out to assess the performance of RankBoost. In the first experiment, we used the algorithm to combine different web search strategies, each of which is a query expansion for a given domain. The second experiment is a collaborative-filtering task for making movie recommendations.
1,888 citations