scispace - formally typeset
Search or ask a question
Topic

Ranking (information retrieval)

About: Ranking (information retrieval) is a research topic. Over the lifetime, 21109 publications have been published within this topic receiving 435130 citations.


Papers
More filters
Journal Article
TL;DR: OASIS is an online dual approach using the passive-aggressive family of learning algorithms with a large margin criterion and an efficient hinge loss cost, which suggests that query independent similarity could be accurately learned even for large scale data sets that could not be handled before.
Abstract: Learning a measure of similarity between pairs of objects is an important generic problem in machine learning. It is particularly useful in large scale applications like searching for an image that is similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given object. Unfortunately, the approaches that exist today for learning such semantic similarity do not scale to large data sets. This is both because typically their CPU and storage requirements grow quadratically with the sample size, and because many methods impose complex positivity constraints on the space of learned similarity functions. The current paper presents OASIS, an Online Algorithm for Scalable Image Similarity learning that learns a bilinear similarity measure over sparse representations. OASIS is an online dual approach using the passive-aggressive family of learning algorithms with a large margin criterion and an efficient hinge loss cost. Our experiments show that OASIS is both fast and accurate at a wide range of scales: for a data set with thousands of images, it achieves better results than existing state-of-the-art methods, while being an order of magnitude faster. For large, web scale, data sets, OASIS can be trained on more than two million images from 150K text queries within 3 days on a single CPU. On this large scale data set, human evaluations showed that 35% of the ten nearest neighbors of a given test image, as found by OASIS, were semantically relevant to that image. This suggests that query independent similarity could be accurately learned even for large scale data sets that could not be handled before.

738 citations

Posted Content
TL;DR: A powerful AGW baseline is designed, achieving state-of-the-art or at least comparable performance on twelve datasets for four different Re-ID tasks, and a new evaluation metric (mINP) is introduced, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re- ID system for real applications.
Abstract: Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.

737 citations

Proceedings ArticleDOI
01 Jan 2010
TL;DR: This work converts the person re-identification problem from an absolute scoring p roblem to a relative ranking problem and develops an novel Ensemble RankSVM to overcome the scalability limitation problem suffered by existing SVM-based ranking methods.
Abstract: Solving the person re-identification problem involves matching observation s of individuals across disjoint camera views. The problem becomes particularly hard in a busy public scene as the number of possible matches is very high. This is further compounded by significant appearance changes due to varying lighting conditions, vie wing angles and body poses across camera views. To address this problem, existing approaches focus on extracting or learning discriminative features followed by template matching using a distance measure. The novelty of this work is that we reformulate the person reidentification problem as a ranking problem and learn a subspace where th e potential true match is given highest ranking rather than any direct distance measure. By doing so, we convert the person re-identification problem from an absolute scoring p roblem to a relative ranking problem. We further develop an novel Ensemble RankSVMto overcome the scalability limitation problem suffered by existing SVM-based ranking methods. This new model reduces significantly memory usage therefore is much more scalable, whilst maintaining high-level performance. We present extensive experiments to demonstrate the performance gain of the proposed ranking approach over existing template matching and classification models.

736 citations

Journal ArticleDOI
27 Jun 2011-PLOS ONE
TL;DR: It is shown that LeaderRank outperforms PageRank in terms of ranking effectiveness, as well as robustness against manipulations and noisy data, which suggest that leaders who are aware of their clout may reinforce the development of social networks, and thus the power of collective search.
Abstract: Finding pertinent information is not limited to search engines. Online communities can amplify the influence of a small number of power users for the benefit of all other users. Users' information foraging in depth and breadth can be greatly enhanced by choosing suitable leaders. For instance in delicious.com, users subscribe to leaders' collection which lead to a deeper and wider reach not achievable with search engines. To consolidate such collective search, it is essential to utilize the leadership topology and identify influential users. Google's PageRank, as a successful search algorithm in the World Wide Web, turns out to be less effective in networks of people. We thus devise an adaptive and parameter-free algorithm, the LeaderRank, to quantify user influence. We show that LeaderRank outperforms PageRank in terms of ranking effectiveness, as well as robustness against manipulations and noisy data. These results suggest that leaders who are aware of their clout may reinforce the development of social networks, and thus the power of collective search.

718 citations

Proceedings ArticleDOI
23 May 2006
TL;DR: A model for selecting between candidates is built, by using a number of features relating the query-candidate pair, and by fitting the model to human judgments of relevance of query suggestions, which improves the quality of the candidates generated.
Abstract: We introduce the notion of query substitution, that is, generating a new query to replace a user's original search query. Our technique uses modifications based on typical substitutions web searchers make to their queries. In this way the new query is strongly related to the original query, containing terms closely related to all of the original terms. This contrasts with query expansion through pseudo-relevance feedback, which is costly and can lead to query drift. This also contrasts with query relaxation through boolean or TFIDF retrieval, which reduces the specificity of the query. We define a scale for evaluating query substitution, and show that our method performs well at generating new queries related to the original queries. We build a model for selecting between candidates, by using a number of features relating the query-candidate pair, and by fitting the model to human judgments of relevance of query suggestions. This further improves the quality of the candidates generated. Experiments show that our techniques significantly increase coverage and effectiveness in the setting of sponsored search.

707 citations


Network Information
Related Topics (5)
Web page
50.3K papers, 975.1K citations
83% related
Ontology (information science)
57K papers, 869.1K citations
82% related
Graph (abstract data type)
69.9K papers, 1.2M citations
82% related
Feature learning
15.5K papers, 684.7K citations
81% related
Supervised learning
20.8K papers, 710.5K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,112
20226,541
20211,105
20201,082
20191,168