scispace - formally typeset
Topic

Ranking SVM

About: Ranking SVM is a(n) research topic. Over the lifetime, 2713 publication(s) have been published within this topic receiving 96877 citation(s).
Papers
More filters

Proceedings ArticleDOI
23 Jul 2002-
TL;DR: The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking.
Abstract: This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.

4,297 citations


Posted ContentDOI
29 Oct 1999-Technical reports
Abstract: Training a support vector machine SVM leads to a quadratic optimization problem with bound constraints and one linear equality constraint Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner In particular, for large learning tasks with many training examples on the shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements SVM light is an implementation of an SVM learner which addresses the problem of large tasks This chapter presents algorithmic and computational results developed for SVM light V 20, which make large-scale SVM training more practical The results give guidelines for the application of SVMs to large domains

4,071 citations


Proceedings Article
18 Jun 2009-
Abstract: Item recommendation is the task of predicting a personalized ranking on a set of items (e.g. websites, movies, products). In this paper, we investigate the most common scenario with implicit feedback (e.g. clicks, purchases). There are many methods for item recommendation from implicit feedback like matrix factorization (MF) or adaptive k-nearest-neighbor (kNN). Even though these methods are designed for the item prediction task of personalized ranking, none of them is directly optimized for ranking. In this paper we present a generic optimization criterion BPR-Opt for personalized ranking that is the maximum posterior estimator derived from a Bayesian analysis of the problem. We also provide a generic learning algorithm for optimizing models with respect to BPR-Opt. The learning method is based on stochastic gradient descent with bootstrap sampling. We show how to apply our method to two state-of-the-art recommender models: matrix factorization and adaptive kNN. Our experiments indicate that for the task of personalized ranking our optimization method outperforms the standard learning techniques for MF and kNN. The results show the importance of optimizing models for the right criterion.

3,424 citations


Proceedings ArticleDOI
07 Aug 2005-
TL;DR: RankNet is introduced, an implementation of these ideas using a neural network to model the underlying ranking function, and test results on toy data and on data from a commercial internet search engine are presented.
Abstract: We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine.

2,501 citations


Book
Tie-Yan Liu1
27 Jun 2009-
TL;DR: Three major approaches to learning to rank are introduced, i.e., the pointwise, pairwise, and listwise approaches, the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures are analyzed, and the performance of these approaches on the LETOR benchmark datasets is evaluated.
Abstract: This tutorial is concerned with a comprehensive introduction to the research area of learning to rank for information retrieval. In the first part of the tutorial, we will introduce three major approaches to learning to rank, i.e., the pointwise, pairwise, and listwise approaches, analyze the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures, evaluate the performance of these approaches on the LETOR benchmark datasets, and demonstrate how to use these approaches to solve real ranking applications. In the second part of the tutorial, we will discuss some advanced topics regarding learning to rank, such as relational ranking, diverse ranking, semi-supervised ranking, transfer ranking, query-dependent ranking, and training data preprocessing. In the third part, we will briefly mention the recent advances on statistical learning theory for ranking, which explain the generalization ability and statistical consistency of different ranking methods. In the last part, we will conclude the tutorial and show several future research directions.

2,244 citations


Network Information
Related Topics (5)
Correlation clustering

19.3K papers, 602.5K citations

85% related
k-medians clustering

5.4K papers, 174.7K citations

84% related
Constrained clustering

5.3K papers, 213.2K citations

83% related
CURE data clustering algorithm

13.7K papers, 461.2K citations

83% related
Semi-supervised learning

12.1K papers, 611.2K citations

83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20212
20209
20199
201823
2017125
2016157

Top Attributes

Show by:

Topic's top 5 most impactful authors

Hang Li

24 papers, 3.8K citations

Tie-Yan Liu

13 papers, 1.7K citations

Xueqi Cheng

11 papers, 385 citations

Zhaohui Zheng

10 papers, 519 citations

Yanyan Lan

9 papers, 441 citations