scispace - formally typeset
Search or ask a question
Topic

RAPD

About: RAPD is a research topic. Over the lifetime, 15960 publications have been published within this topic receiving 360391 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The approach demonstrates the usefulness and feasibility of marker discovery in one population followed by accurate mapping of that marker onto a core, community-wide map and the probable existence of multiple genes controlling growth habit in common bean.
Abstract: Common bean (Phaseolus vulgaris L.) exhibits a wide variety of seed coat patterns and colors. From a historical perspective, extensive genetic analyses have identified specific genes that control seed coat pattern (T, Z, L, J, Bip, and Ana) and color (P, C, R, J, D, G, B, V, and Rk). Many of these genes exhibit epistatic interactions with other genes, interactions that define the many seed coat patterns and colors observed within the species. To better understand these complex interactions, we began a molecular marker discovery program that previously identified random amplified polymorphic DNA (RAPD) markers linked to many of these genes. We report here the discovery of RAPD markers linked to three additional genes-C, G, and V. These markers, and five RAPD markers we previously discovered linked to other seed coat pattern and color genes, were converted into easily scorable sequence tagged site (STS) markers. We next placed these markers onto a common molecular map shared by the Phaseolus research community and demonstrated a generally wide distribution of the genes throughout the common bean genome. A few previously unrecognized linkages were discovered. The probable existence of multiple genes controlling growth habit in common bean is discussed. Our approach demonstrates the usefulness and feasibility of marker discovery in one population followed by accurate mapping of that marker onto a core, community-wide map.

146 citations

Journal ArticleDOI
TL;DR: RAPD markers have the same resolving power as RFLP markers when used on exactly the same set of B. napus genotypes, and these markers may be preferred in applications where the relationships between closely-related breeding lines are of interest.
Abstract: RFLP and RAPD markers were evaluated and compared for their ability to determine genetic relationships in a set of three B. napus breeding lines. Using a total of 50 RFLP and 92 RAPD markers, the relatedness between the lines was determined. In total, the RFLP and the RAPD analysis revealed more than 500 and 400 bands, respectively. The relative frequencies of loci with allele differences were estimated from the band data. The RFLP and RAPD marker sets detected very similar relationships among the three lines, consistent with known pedigree data. Bootstrap analyses showed that the use of approximately 30 probes or primers would have been sufficient to achieve these relationships. This indicates that RAPD markers have the same resolving power as RFLP markers when used on exactly the same set of B. napus genotypes. Since RAPD markers are easier and quicker to use, these markers may be preferred in applications where the relationships between closely-related breeding lines are of interest. The use of RAPD markers in fingerprinting applications may, however, not be warranted, and this is discussed in relation to the reliability of RAPD markers.

146 citations

Journal ArticleDOI
TL;DR: Fluorescent AFLP seems particularly well suited for studying the epidemiology of nosocomial infections and outbreaks caused by Acinetobacterspecies, and it permitted analysis with an automated DNA sequencer.
Abstract: Thirty-one strains of Acinetobacter species, including type strains of the 18 genomic species and 13 clinical isolates, were compared by amplified ribosomal DNA restriction analysis (ARDRA), random amplified polymorphic DNA analysis (RAPD), and amplified fragment length polymorphism (AFLP) fingerprinting. ARDRA, performed with five different enzymes, showed low discriminatory power for differentiating Acinetobacter at the species and strain level. The standardized commercially available RAPD kit clearly enabled the discrimination of all Acinetobacter genomic species but showed great polymorphism between isolates of Acinetobacter baumannii. AFLP fingerprinting with radioactively as well as fluorescently labelled primers showed high discriminatory power for the identification of 18 Acinetobacter genomic species and typing of 13 clinical Acinetobacter isolates. Compared to radioactive AFLP, fluorescent AFLP was technically fast and simple to perform, and it permitted analysis with an automated DNA sequencer. Fluorescent AFLP seems particularly well suited for studying the epidemiology of nosocomial infections and outbreaks caused by Acinetobacter species.

146 citations

Journal ArticleDOI
TL;DR: The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa and becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses.
Abstract: DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa.

146 citations

Journal ArticleDOI
TL;DR: It appears that ISSR are better tools than RAPD to identify beans by gene pool of origin though they did not revealed as many differences between individuals as RAPDs.
Abstract: In this study, we report the use of ISSR to assess genetic diversity and to determine the relationships among ten cultivars of common bean developed in Argentina and three materials from France. ISSR markers resolved two major groups corresponding to the Andean and Mesoamerican gene pools of common bean. We compared the results of previous analysis, performed with RAPD markers (Galvan et al., 2001), with the results generated by means of ISSR. It appears that ISSR are better tools than RAPDs to identify beans by gene pool of origin though they did not revealed as many differences between individuals as RAPDs.

144 citations


Network Information
Related Topics (5)
Genetic diversity
42.8K papers, 873.4K citations
90% related
Genetic variability
16.2K papers, 467.7K citations
88% related
Germination
51.9K papers, 877.9K citations
86% related
Seedling
28.6K papers, 478.2K citations
85% related
Restriction fragment length polymorphism
17.4K papers, 696.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023149
2022309
2021152
2020195
2019246