scispace - formally typeset
Search or ask a question
Topic

RAPD

About: RAPD is a research topic. Over the lifetime, 15960 publications have been published within this topic receiving 360391 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates the feasibility of using RAPD markers to identify somaclonal variants of peach and provides evidence for the existence of genetic differences among these variants.
Abstract: Peach [Prunus persica (L.) Batsch] regenerants from cv ‘Sunhigh’ embryo no. 156, regenerants obtained from cv ‘Redhaven’ embryo no. 30, and two peach cultivars ‘Sunhigh’ and ‘Redhaven’, were screened for polymorphic RAPD (Random Amplified Polymorphic DNA) markers with up to 60 10-mer primers. Although 35 primers produced results with scoreable bands, only 10 of the primers revealed polymorphism for regenerants of embryo no. 156 and cv ‘Sunhigh’, and 1 revealed a low level of polymorphism for regenerants of embryo no. 30 and cv ‘Redhaven’. This study demonstrates the feasibility of using RAPD markers to identify somaclonal variants of peach and provides evidence for the existence of genetic differences among these variants.

119 citations

Journal ArticleDOI
TL;DR: RAPD analysis resulted in a more definitive separation of clusters of accessions, and the most significant impact of the DNA-based markers probably will be the more accurate determination of relationships between accessions that are too close to be accurately differentiated by isozymes.
Abstract: Isozyme analysis is a valuable tool for determining genetic relationships among breeding lines and populations. The recently developed DNA technologies which can assay a greater proportion of the plant genome are providing a plentiful array of additional genomic markers. The objective of this research was to compare random amplified polymorphic DNA (RAPD) versus isozyme-based estimation of relationships among 24 accessions of a hexaploid wild oat, Avena sterilis L. The accessions were evaluated for variation in 23 enzyme systems and by 21 10-mer primers. A total of 77 polymorphic isozyme bands and 115 polymorphic RAPD bands were observed. Two matrices of genetic distances were estimated based on band presence/ absence. These matrices were subsequently utilized in cluster analysis and principal coordinate analysis. Both isozymes and RAPDs were proficient at distinguishing between the 24 accessions. The correspondence between the elements of both distance matrices was moderate (r=0.36**). Nevertheless, the overall representation of relationships among accessions by cluster analysis and ordination was in considerable agreement. The two techniques contrasted most notably in pair-by-pair comparisons of relationships. RAPD analysis resulted in a more definitive separation of clusters of accessions. The most significant impact of the DNA-based markers probably will be the more accurate determination of relationships between accessions that are too close to be accurately differentiated by isozymes.

119 citations

Journal ArticleDOI
TL;DR: It is concluded that Foc races 0, 1B/C, 5, and 6 can be characterized by the RAPD markers.
Abstract: Ninety-nine isolates of Fusarium oxysporum f. sp. ciceris (Foc), representative of the two pathotypes (yellowing and wilt) and the eight races described (races 0, 1A, 1B/C, 2, 3, 4, 5, and 6), were used in this study. Sixty isolates were analyzed by the RAPD technique using DNA bulks for each race and 40 primers. Bands presumably specific for a DNA bulk were identified and this specificity was confirmed by further RAPD analysis of individual isolates in each DNA bulk. Primers OPI-09, OPI-18, OPF-06, OPF-10, and OPF-12 generated RAPD marker bands for races 0, 1B/C, 2, 3, 4, 5, and 6. The reliability and utility of this procedure was validated in ‘blind trials’ using 39 new Foc isolates. Ten of the 39 isolates had already been typed to race by pathogenicity tests and 29 were typed both by pathogenicity and RAPD testing in this study. In these ‘blind trials’, we assigned the 39 new isolates to a race solely on the basis of their RAPD haplotype. Thus, we concluded that Foc races 0, 1B/C, 5, and 6 can be characterized by the RAPD markers. Cluster analysis of the RAPD data set resulted in three clusters of isolates within Foc. The yellowing isolates were grouped in two distinct clusters which correspond to races 0 and 1B/C. The wilt isolates constitute a third cluster that included races 1A, 2, 3, 4, 5, and 6. These results provide a means of studying the distribution of Foc races, to assist in the early detection of introduced race(s) and to facilitate the efficient deployment of available host resistance.

118 citations

Journal ArticleDOI
01 Oct 1993-Heredity
TL;DR: Genetic variation in chrysanthemum (Dendranthema grandiflora) was studied using a recently developed technique generating Random Amplified Polymorphic DNAs (RAPDs), it appeared that variation between cultivars was high and that the cultivars used could be distinguished from each other by using only two different primers.
Abstract: Genetic variation in chrysanthemum (Dendranthema grandiflora) was studied using a recently developed technique generating Random Amplified Polymorphic DNAs (RAPDs). It appeared that variation between cultivars was high and that the cultivars used could be distinguished from each other by using only two different primers. A family of cultivars, derived from one original cultivar by vegetative propagation, had identical fragment patterns. Because of the high level of polymorphism and clonal stability RAPD fragments are useful for cultivar identification. Genetic variability among related Dendranthema species was too high to study genetic distances either among cultivars within chrysanthemum or among species related to chrysanthemum.

118 citations

Journal ArticleDOI
TL;DR: This study revealed that, expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, and L. culinaris ssp.
Abstract: Randomly amplified polymorphic DNA (RAPD) markers were used to estimate intra- and interspecific variations in the genus Lens (lentil). Twenty cultivars of L. culinaris ssp. culinaris, including 11 microsperma (small-seeded) and nine macrosperma (large-seeded) types, and 16 wild relatives (four accessions each of L. culinaris ssp. orientalis, L. odemensis, L. nigricans and L. ervoides), were evaluated for genetic variability using a set of 40 random 10-mer primers. Fifty reproducibly scorable DNA bands were observed from ten of the primers, 90% of which were polymorphic. Genetic distances between each of the accessions were calculated from simple matching coefficients. A dendrogram showing genetic relationships between them was constructed by an unweighted pair-group method with arithmetical averages (UPGMA). This study revealed that (1) expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, (2) L. culinaris ssp. orientalis is the most likely candidate for a progenitor of the cultivated species, and (3) microsperma and macrosperma cultivars were indistinguishable by the RAPD markers identified here.

118 citations


Network Information
Related Topics (5)
Genetic diversity
42.8K papers, 873.4K citations
90% related
Genetic variability
16.2K papers, 467.7K citations
88% related
Germination
51.9K papers, 877.9K citations
86% related
Seedling
28.6K papers, 478.2K citations
85% related
Restriction fragment length polymorphism
17.4K papers, 696.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023149
2022309
2021152
2020195
2019246