scispace - formally typeset
Search or ask a question
Topic

Rapid eye movement sleep

About: Rapid eye movement sleep is a research topic. Over the lifetime, 3740 publications have been published within this topic receiving 183415 citations. The topic is also known as: REM sleep & REMS.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that two distinct breathing features, implying different levels of autonomic drive to the heart, influence HRV in the elderly during sleep, suggesting a predominant loss of parasympathetic activity which may be related to decreased slow‐wave sleep duration.
Abstract: Aging is commonly associated with decreased sleep quality and increased periodic breathing (PB) that can influence heart rate variability (HRV). Cardiac autonomic control, as inferred from HRV analysis, was determined, taking into account the sleep quality and breathing patterns. Two groups of 12 young (21.1 +/- 0.8 years) and 12 older (64.9 +/- 1.9 years) volunteers underwent electroencephalographic, cardiac, and respiratory recordings during one experimental night. Time and frequency domain indices of HRV were calculated in 5-min segments, together with electroencephalographic and respiratory power spectra. In the elderly, large R-R oscillations in the very-low frequency (VLF) range emerged, that reflected the frequency of PB observed in 18% of the sleep time. PB occurred more frequently during rapid eye movement sleep (REM) sleep and caused a significant (P < 0.02) increase in the standard deviation of normal R-R intervals (SDNN) and absolute low-frequency (LF) power. With normal respiratory patterns, SDNN, absolute VLF, LF, and high frequency (HF) power fell during each sleep stage (P < 0.01) compared with young subjects, with no significant sleep-stage dependent variations. An overall decrease (P < 0.01) in normalized HF/(LF + HF) was observed in the elderly, suggesting a predominant loss of parasympathetic activity which may be related to decreased slow-wave sleep duration. These results indicate that two distinct breathing features, implying different levels of autonomic drive to the heart, influence HRV in the elderly during sleep. The breathing pattern must be considered to correctly interpret HRV in the elderly.

81 citations

Journal ArticleDOI
Subimal Datta1
TL;DR: This review will reflect on research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation and suggest some potential future directions to further the understanding of the neuro biology of sleep.

81 citations

Journal ArticleDOI
TL;DR: The ability of IL‐6 to enhance sleep‐associated emotional memory consolidation highlights an example of a functional interaction between the central nervous and immune system.
Abstract: The cytokine IL-6 has been considered to exert neuromodulating influences on the brain, with promoting influences on sleep. Sleep enhances the consolidation of memories, and, in particular, late nocturnal sleep also represents a period of enhanced IL-6 signaling, due to a distinctly enhanced availability of soluble IL-6 receptors during this period, enabling trans-signaling of IL-6 to neurons. Thus, a contribution of IL-6 to sleep-dependent memory consolidation is hypothesized. To test this hypothesis, we compared effects of intranasally administered IL-6 (vs. placebo) on sleep-dependent consolidation of declarative (neutral and emotional texts, 2-dimensional object location) and procedural (finger sequence tapping) memories in 17 healthy young men. IL-6 distinctly improved the sleep-related consolidation of emotional text material (P<0.03), which benefits mostly from sleep in the second night-half, in which rapid eye movement sleep (REM) dominates the non-REM-REM sleep cycle. During this second night-half, the amount of electroencephalogram slow-wave activity (0.5-4 Hz) distinctly increased after IL-6 (P<0.01). Other types of memory were not affected. The ability of IL-6 to enhance sleep-associated emotional memory consolidation highlights an example of a functional interaction between the central nervous and immune system.

81 citations

Journal ArticleDOI
01 Aug 2004-Sleep
TL;DR: The findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.
Abstract: Study Objectives: Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, We characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. Design: FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. Setting: N/A. Patients or Participants: FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. Interventions: Sleep deprivation. Measurements and Results: FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. Conclusion: These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.

81 citations

Journal ArticleDOI
TL;DR: Children with TS have disturbed sleep quality with increased arousal phenomena, which both may be intrinsic to the disorder and might trigger tics and other behavioral problems during daytime.

81 citations


Network Information
Related Topics (5)
Dopaminergic
29K papers, 1.4M citations
85% related
Dopamine
45.7K papers, 2.2M citations
85% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Hippocampus
34.9K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202353
2022115
2021116
2020107
201995
201883