scispace - formally typeset
Search or ask a question
Topic

Rapid eye movement sleep

About: Rapid eye movement sleep is a research topic. Over the lifetime, 3740 publications have been published within this topic receiving 183415 citations. The topic is also known as: REM sleep & REMS.


Papers
More filters
Journal ArticleDOI
TL;DR: Results show that cyclic oscillation of EEG within sleep is not limited to delta frequencies, and the reciprocal relation of sigma to delta holds implications for the EEG mechanisms of NREM sleep.

124 citations

Journal ArticleDOI
TL;DR: It is argued that both behavioral and neurophysiological evidence supports a role of REM sleep for amygdala-related memory processing: the amygdala-hippocampus-medial prefrontal cortex network involved in emotional processing, fear memory and valence consolidation shows strongest activity during REM sleep, in contrast to the hippocampus-medially prefrontal cortex only network which is more active during non-REM sleep.

124 citations

Journal ArticleDOI
TL;DR: The theory presented is unique in that it hypothesizes an organizational level at which sleep occurs, hypothesizes that sleep is neuronal--use-dependent, not wakefulness-dependent; hypothesizes the both non-rapid eye movement sleep (NREMS) and REMS serve the same function of synaptic reorganization.

123 citations

Journal ArticleDOI
TL;DR: Another population of intermingled sleep‐active cells are identified, which do not contain MCH (or Orx), but utilize γ‐aminobutyric acid (GABA) as a neurotransmitter, and could serve to inhibit other neurons of the arousal systems, including local Orx neurons in the LH.
Abstract: The lateral hypothalamus (LH), where wake-active orexin (Orx)-containing neurons are located, has been considered a waking center. Yet, melanin-concentrating hormone (MCH)-containing neurons are codistributed therein with Orx neurons and, in contrast to them, are active during sleep, not waking. In the present study employing juxtacellular recording and labeling of neurons with Neurobiotin (Nb) in naturally sleeping-waking head-fixed rats, we identified another population of intermingled sleep-active cells, which do not contain MCH (or Orx), but utilize gamma-aminobutyric acid (GABA) as a neurotransmitter. The 'sleep-max' active neurons represented 53% of Nb-labeled MCH-(and Orx) immunonegative (-) cells recorded in the LH. For identification of their neurotransmitter, Nb-labeled varicosities of the Nb-labeled/MCH- neurons were sought within sections adjacent to the Nb-labeled soma and immunostained for the vesicular transporter for GABA (VGAT) or for glutamate. A small proportion of sleep-max Nb+/MCH- neurons (19%) discharged maximally during slow-wave sleep (called 'S-max') in positive correlation with delta electroencephalogram activity, and from VGAT staining of Nb-labeled varicosities appeared to be GABAergic. The vast proportion of sleep-max Nb+/MCH- neurons (81%) discharged maximally during paradoxical sleep (PS, called 'P-max') in negative correlation with electromyogram amplitude, and from Nb-labeled varicosities also appeared to be predominantly GABAergic. Given their discharge profiles across the sleep-wake cycle, P-max together with S-max GABAergic neurons could thus serve to inhibit other neurons of the arousal systems, including local Orx neurons in the LH. They could accordingly dampen arousal with muscle tone and promote sleep, including PS with muscle atonia.

123 citations

Journal ArticleDOI
Dieter Kunz1, Richard Mahlberg1, Cordula Müller1, Amely Tilmann1, Frederik Bes 
TL;DR: The findings show that exogenous melatonin, when administered at the appropriate time, seems to normalize circadian variation in human physiology and may have a strong impact on general health, especially in the elderly and in shift workers.
Abstract: Recent data suggest that melatonin may influence human physiology, including the sleep-wake cycle, in a time-dependent manner via the body's internal clock. Rapid-eye-movement (REM) sleep expression is strongly circadian modulated, and the impact of REM sleep on primary brain functions, metabolic processes, and immune system function has become increasingly clear over the past decade. In our study, we evaluated the effects of exogenous melatonin on disturbed REM sleep in humans. Fourteen consecutive outpatients (five women, nine men; mean age, 50 yr) with unselected neuropsychiatric sleep disorders and reduced REM sleep duration (25% or more below age norm according to diagnostic polysomnography) were included in two consecutive, randomized, double-blind, placebo-controlled, parallel design clinical trials. Patients received 3 mg melatonin daily, administered between 2200 and 2300 h for 4 wk. The results of the study show that melatonin was significantly more effective than placebo: patients on melatonin experienced significant increases in REM sleep percentage (baseline/melatonin, 14.7/17.8 vs. baseline/placebo, 14.3/12.0) and improvements in subjective measures of daytime dysfunction as well as clinical global impression score. Melatonin did not shift circadian phase or suppress temperature but did increase REM sleep continuity and promote decline in rectal temperature during sleep. These results were confirmed in patients who received melatonin in the second study (REM sleep percentage baseline/placebo/melatonin, 14.3/12.0/17.9). In patients who received melatonin in the first study and placebo in the second, the above mentioned effects outlasted the period of melatonin administration and diminished only slowly over time (REM sleep percentage baseline/melatonin/placebo, 14.7/17.8/16.2). Our findings show that exogenous melatonin, when administered at the appropriate time, seems to normalize circadian variation in human physiology. It may, therefore, have a strong impact on general health, especially in the elderly and in shift workers.

123 citations


Network Information
Related Topics (5)
Dopaminergic
29K papers, 1.4M citations
85% related
Dopamine
45.7K papers, 2.2M citations
85% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Hippocampus
34.9K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202353
2022115
2021116
2020107
201995
201883