scispace - formally typeset
Search or ask a question
Topic

Rarefaction

About: Rarefaction is a research topic. Over the lifetime, 1852 publications have been published within this topic receiving 26943 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the hydrodynamics and rarefaction fan and contact discontinuity at a microscopic level for a one-dimensional totally asymmetric k-step exclusion process.
Abstract: We review the hydrodynamics and discuss the shock, rarefaction fan and contact discontinuity at a microscopic level for a one-dimensional totally asymmetric k-step exclusion process. In particular we define a microscopical object that identifies the shock in the decreasing case.

8 citations

Journal ArticleDOI
Robert G. Jahn1
TL;DR: In this paper, a discussion of recent experiments in shock-wave refraction which have clarified a special type of shock outflow process appearing to have relevance to other shock interactions, and notably to shock reflection from an oblique wall.
Abstract: This paper is a discussion of recent experiments in shock-wave refraction which have clarified a special type of shock outflow process appearing to have relevance to other shock interactions, and notably to shock reflection from an oblique wall. For certain incident shock strengths and angles of incidence α, the air/methane refraction problem simulates closely the situation in the trouble-some range of the reflection problem, in which α lies between the value α e at which the theoretical solutions terminate and the value α 0 that marks the onset of Mach reflection, and in which the flow deflections cannot be reconciled with theoretically permissible reflected shock strengths. In the analogous refraction cases, the reflected shock is observed to increase in strength along its length to a maximum value at the intersection point, and to be followed by a subsonic rarefaction zone which also increases in severity near the intersection. In fact, this zone appers to coalesce into a subsonic discontinuity, just at the intersection point—a feature which would contradict one of the basic assumptions of the regular reflection and refraction theories. Other refraction experiments suggest that a similar process is relevant to the Mach reflection configuration, and may account for the discrepancies in the three-shock theory for weak incident shocks.

8 citations

Journal ArticleDOI
TL;DR: In this paper, a model is derived to describe the evolution of the fluid-fluid interface, where the effective saturation of the injected fluid is zero, and the saturation field is then computed after the interface evolution is obtained.
Abstract: We study the dynamics of two-phase flows injected into a confined porous layer. A model is derived to describe the evolution of the fluid–fluid interface, where the effective saturation of the injected fluid is zero. The flow is driven by pressure gradients due to injection, the buoyancy due to density contrasts and the interfacial tension between the injected and ambient fluids. The saturation field is then computed after the interface evolution is obtained. The results demonstrate that the flow behaviour evolves from early-time unconfined to late-time confined behaviours. In particular, at early times, the influence of capillary forces drives fluid flow and produces a new self-similar spreading behaviour in the unconfined limit that is distinct from the gravity current solution. At late times, we obtain two new similarity solutions, a modified shock solution and a compound wave solution, in addition to the rarefaction and shock solutions in the sharp-interface limit. A schematic regime diagram is also provided, which summarises all possible similarity solutions and the time transitions between them for the partially saturating flows resulting from fluid injection into a confined porous layer. Three dimensionless control parameters are identified and their influence on the fluid flow is also discussed, including the viscosity ratio, the pore-size distribution and the relative contributions of capillary and buoyancy forces. To underline the relevance of our results, we also briefly describe the implications of the two-phase flow model to the geological storage of , using representative geological parameters from the Sleipner and In Salah sites.

8 citations

Journal ArticleDOI
Ruofan Qiu1, Tao Zhou1, Bao Yue1, Zhou Kang1, Che Huanhuan1, Yancheng You1 
TL;DR: In this article, the mesoscopic physics of nonequilibrium hydrodynamic and thermodynamic effects in shock waves, contact discontinuities, and rarefaction waves were investigated.
Abstract: This paper presents a detailed description of a molecular velocity distribution-based mesoscopic kinetic approach that enables a better understanding of various nonequilibrium hydrodynamic and thermodynamic effects in shock waves, contact discontinuities, and rarefaction waves. This builds on the mesoscopic kinetic approach in a previous investigation into regular reflection shocks by further addressing the mesoscopic physical meaning of kinetic moments from the view of kinetics and the implications of the magnitude and sign of nonequilibrium kinetic moments. To deepen understanding of nonequilibrium effects, this work focuses on the one-dimensional unsteady shock tube problem, which contains the typical and essential features of the discontinuous flows, and has no interference of two-dimensional flow direction. The approach uses a lattice Boltzmann method to solve the flow field, and describes nonequilibrium effects through the nonequilibrium kinetic moments of molecular velocity distribution functions. The mechanism of nonequilibrium effect in discontinuous flows is further probed. This work develops the mesoscopic kinetic approach and clarifies the mesoscopic physics of shock waves, contact discontinuities, and rarefaction waves.

8 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
79% related
Boundary layer
64.9K papers, 1.4M citations
78% related
Reynolds number
68.4K papers, 1.6M citations
78% related
Partial differential equation
70.8K papers, 1.6M citations
75% related
Boundary value problem
145.3K papers, 2.7M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021105
202064
201964
201864
201773