scispace - formally typeset
Search or ask a question
Topic

Rate of convergence

About: Rate of convergence is a research topic. Over the lifetime, 31257 publications have been published within this topic receiving 795334 citations. The topic is also known as: convergence rate.


Papers
More filters
Proceedings Article
12 Dec 2011
TL;DR: This work provides a non-asymptotic analysis of the convergence of two well-known algorithms, stochastic gradient descent as well as a simple modification where iterates are averaged, suggesting that a learning rate proportional to the inverse of the number of iterations, while leading to the optimal convergence rate, is not robust to the lack of strong convexity or the setting of the proportionality constant.
Abstract: We consider the minimization of a convex objective function defined on a Hilbert space, which is only available through unbiased estimates of its gradients. This problem includes standard machine learning algorithms such as kernel logistic regression and least-squares regression, and is commonly referred to as a stochastic approximation problem in the operations research community. We provide a non-asymptotic analysis of the convergence of two well-known algorithms, stochastic gradient descent (a.k.a. Robbins-Monro algorithm) as well as a simple modification where iterates are averaged (a.k.a. Polyak-Ruppert averaging). Our analysis suggests that a learning rate proportional to the inverse of the number of iterations, while leading to the optimal convergence rate in the strongly convex case, is not robust to the lack of strong convexity or the setting of the proportionality constant. This situation is remedied when using slower decays together with averaging, robustly leading to the optimal rate of convergence. We illustrate our theoretical results with simulations on synthetic and standard datasets.

726 citations

Journal ArticleDOI
TL;DR: This work generalizes the primal-dual hybrid gradient (PDHG) algorithm to a broader class of convex optimization problems, and surveys several closely related methods and explains the connections to PDHG.
Abstract: We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in [An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08-34, UCLA, Los Angeles, CA, 2008] to a broader class of convex optimization problems. In addition, we survey several closely related methods and explain the connections to PDHG. We point out convergence results for a modified version of PDHG that has a similarly good empirical convergence rate for total variation (TV) minimization problems. We also prove a convergence result for PDHG applied to TV denoising with some restrictions on the PDHG step size parameters. We show how to interpret this special case as a projected averaged gradient method applied to the dual functional. We discuss the range of parameters for which these methods can be shown to converge. We also present some numerical comparisons of these algorithms applied to TV denoising, TV deblurring, and constrained $l_1$ minimization problems.

722 citations

Journal ArticleDOI
TL;DR: Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations and results for the fifth-order method are disappointing, but both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods.

709 citations

Journal ArticleDOI
TL;DR: This paper establishes the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small.
Abstract: We analyze the convergence rate of the alternating direction method of multipliers (ADMM) for minimizing the sum of two or more nonsmooth convex separable functions subject to linear constraints. Previous analysis of the ADMM typically assumes that the objective function is the sum of only two convex functions defined on two separable blocks of variables even though the algorithm works well in numerical experiments for three or more blocks. Moreover, there has been no rate of convergence analysis for the ADMM without strong convexity in the objective function. In this paper we establish the global R-linear convergence of the ADMM for minimizing the sum of any number of convex separable functions, assuming that a certain error bound condition holds true and the dual stepsize is sufficiently small. Such an error bound condition is satisfied for example when the feasible set is a compact polyhedron and the objective function consists of a smooth strictly convex function composed with a linear mapping, and a nonsmooth $$\ell _1$$l1 regularizer. This result implies the linear convergence of the ADMM for contemporary applications such as LASSO without assuming strong convexity of the objective function.

705 citations

Journal ArticleDOI
TL;DR: A MATLAB GUI toolbox is developed, which can be used to solve DRT regularization problems, and it is shown that applying RBF discretization for deconvolving the DRT problem can lead to faster numerical convergence rate as compared with that of PWL discretized only at error free situation.

702 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
89% related
Markov chain
51.9K papers, 1.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
88% related
Differential equation
88K papers, 2M citations
88% related
Nonlinear system
208.1K papers, 4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023693
20221,530
20212,129
20202,036
20191,995