scispace - formally typeset
Search or ask a question
Topic

Rate of convergence

About: Rate of convergence is a research topic. Over the lifetime, 31257 publications have been published within this topic receiving 795334 citations. The topic is also known as: convergence rate.


Papers
More filters
Journal ArticleDOI
TL;DR: A novelties of the current approach is to treat the MLSRK method as a variant of the ‘standard’ finite element method and depart from there to make a connection with the multiresolution approximation, to embrace theMLRK formulation with the notion of the controlled fp-approximation.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a particle system is used to prove both a convergence result with convergence rate and a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex.
Abstract: We use here a particle system to prove both a convergence result (with convergence rate) and a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex. The proof of convergence is simpler than the one in Carrillo–McCann–Villani (Rev. Mat. Iberoamericana 19:971–1018, 2003; Arch. Rat. Mech. Anal. 179:217–263, 2006). All the results complete former results of Malrieu (Ann. Appl. Probab. 13:540–560, 2003) in the uniformly convex case. The main tool is an uniform propagation of chaos property and a direct control in Wasserstein distance of solutions starting with different initial measures. The deviation inequality is obtained via a T 1 transportation cost inequality replacing the logarithmic Sobolev inequality which is no more clearly dimension free.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a meshless Petrov-Galerkin formulation is developed in which derivatives of the trial functions are obtained as a linear combination of derivatives of Shepard functions, and conditions on test functions and trial functions for nonintegrable pseudo-derivatives for Petrov Galerkin method which pass the patch test.

139 citations

Proceedings Article
08 Dec 2014
TL;DR: This paper shows how to apply the APCG method to solve the dual of the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations.
Abstract: We develop an accelerated randomized proximal coordinate gradient (APCG) method, for solving a broad class of composite convex optimization problems. In particular, our method achieves faster linear convergence rates for minimizing strongly convex functions than existing randomized proximal coordinate gradient methods. We show how to apply the APCG method to solve the dual of the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method.

139 citations

Journal ArticleDOI
TL;DR: Theoretical analysis of the convergence and the stability of fictitious dynamical methods for electrons shows that a particular damped second-order dynamics has a much faster rate of convergence to the ground state than first-order steepest-descent algorithms while retaining their numerical cost per time step.
Abstract: We study the convergence and the stability of fictitious dynamical methods for electrons. first, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground state than first-order steepest-descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyze the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the larger wave vector components of the kinetic energy or from the small wave vector components of the Coulomb potential giving rise to the so called charge sloshing problem. We show how to eliminate large wave vector instabilities by adopting a preconditioning scheme in the context of Car-Parrinello ab initio molecular-dynamics simulations of the ionic motion. We also show how to solve the charge sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.

139 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
89% related
Markov chain
51.9K papers, 1.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
88% related
Differential equation
88K papers, 2M citations
88% related
Nonlinear system
208.1K papers, 4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023693
20221,530
20212,129
20202,036
20191,995