scispace - formally typeset
Search or ask a question
Topic

Rate of convergence

About: Rate of convergence is a research topic. Over the lifetime, 31257 publications have been published within this topic receiving 795334 citations. The topic is also known as: convergence rate.


Papers
More filters
Journal ArticleDOI
TL;DR: The hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements is derived and analyzed.
Abstract: We derive and analyze the hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements. The method is analyzed as a block symmetric Gauβ-Seidel iteration with inner iterations, but it is strongly related to 2-level methods, to the standard multigridV-cycle, and to earlier Jacobi-like hierarchical basis methods. The method is very robust, and has a nearly optimal convergence rate and work estimate. It is especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.

318 citations

Journal ArticleDOI
TL;DR: In this paper, a method for adaptive stabilization without a minimum-phase assumption and without knowledge of the sign of the high-frequency gain is developed, which leads to a guarantee of Lyapunov stability and an exponential rate of convergence for the state.
Abstract: In this paper, we develop a method for adaptive stabilization without a minimum-phase assumption and without knowledge of the sign of the high-frequency gain. In contrast to recent work by Martensson [8], we include a compactness requirement on the set of possible plants and assume that an upper bound on the order of the plant is known. Under these additional hypotheses, we generate a piecewise linear time-invariant switching control law which leads to a guarantee of Lyapunov stability and an exponential rate of convergence for the state. One of the main objectives in this paper is to eliminate the possibility of "large state deviations" associated with a search Over the space of gain matrices which is required in [8].

318 citations

Journal ArticleDOI
TL;DR: Results with twist averaged variational Monte Carlo on free particles, the Stoner model and the electron gas are shown using Hartree-Fock, Slater-Jastrow, and three-body and backflow wave function.
Abstract: We develop and test Quantum Monte Carlo algorithms that use a``twist'' or a phase in the wave function for fermions in periodic boundary conditions. For metallic systems, averaging over the twist results in faster convergence to the thermodynamic limit than periodic boundary conditions for properties involving the kinetic energy and has the same computational complexity. We determine exponents for the rate of convergence to the thermodynamic limit for the components of the energy of coulomb systems. We show results with twist averaged variational Monte Carlo on free particles, the Stoner model and the electron gas using Hartree-Fock, Slater-Jastrow, and three-body and backflow wave function. We also discuss the use of twist averaging in the grand canonical ensemble, and numerical methods to accomplish the twist averaging.

317 citations

Journal ArticleDOI
TL;DR: This work considers the fundamental question of how quickly the empirical measure obtained from independent samples from $\mu$ approaches $n$ in the Wasserstein distance of any order and proves sharp asymptotic and finite-sample results for this rate of convergence for general measures on general compact metric spaces.
Abstract: The Wasserstein distance between two probability measures on a metric space is a measure of closeness with applications in statistics, probability, and machine learning. In this work, we consider the fundamental question of how quickly the empirical measure obtained from $n$ independent samples from $\mu$ approaches $\mu$ in the Wasserstein distance of any order. We prove sharp asymptotic and finite-sample results for this rate of convergence for general measures on general compact metric spaces. Our finite-sample results show the existence of multi-scale behavior, where measures can exhibit radically different rates of convergence as $n$ grows.

317 citations

01 Jan 1996
TL;DR: The method of analysis is based on an asymptotic analysis of fixed stepsize adaptive algorithms and gives almost sure results regarding the behavior of the parameter estimates, whereas previous stochastic analyses typically consider mean and mean square behavior.
Abstract: This paper presents an analysis of stochastic gradient-based adaptive algorithms with general cost functions. The analysis holds under mild assumptions on the inputs and the cost function. The method of analysis is based on an asymptotic analysis of fixed stepsize adaptive algorithms and gives almost sure results regarding the behavior of the parameter estimates, whereas previous stochastic analyses typically consider mean and mean square behavior. The parameter estimates are shown to enter a small neighborhood about the optimum value and remain there for a finite length of time. Furthermore, almost sure exponential bounds are given for the rate of convergence of the parameter estimates. The asymptotic distribution of the parameter estimates is shown to be Gaussian with mean equal to the optimum value and covariance matrix that depends on the input statistics. Specific adaptive algorithms that fall under the framework of this paper are signed error least mean squre (LMS), dual sign LMS, quantized state LMS, least mean fourth, dead zone algorithms, momentum algorithms, and leaky LMS.

316 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
89% related
Markov chain
51.9K papers, 1.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
88% related
Differential equation
88K papers, 2M citations
88% related
Nonlinear system
208.1K papers, 4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023693
20221,530
20212,129
20202,036
20191,995