scispace - formally typeset
Search or ask a question
Topic

Rate of convergence

About: Rate of convergence is a research topic. Over the lifetime, 31257 publications have been published within this topic receiving 795334 citations. The topic is also known as: convergence rate.


Papers
More filters
Journal ArticleDOI
TL;DR: Compared with the finite element method (FEM) using linear triangle elements and the radial point interpolation method (RPIM) using Gauss integration, the LC-PIM can achieve higher convergence rate and better efficiency.
Abstract: A linearly conforming point interpolation method (LC-PIM) is developed for 2D solid problems. In this method, shape functions are generated using the polynomial basis functions and a scheme for the selection of local supporting nodes based on background cells is suggested, which can always ensure the moment matrix is invertible as long as there are no coincide nodes. Galerkin weak form is adopted for creating discretized system equations, and a nodal integration scheme with strain smoothing operation is used to perform the numerical integration. The present LC-PIM can guarantee linear exactness and monotonic convergence for the numerical results. Numerical examples are used to examine the present method in terms of accuracy, convergence, and efficiency. Compared with the finite element method (FEM) using linear triangle elements and the radial point interpolation method (RPIM) using Gauss integration, the LC-PIM can achieve higher convergence rate and better efficiency.

219 citations

Journal ArticleDOI
TL;DR: Conditions under which these approximations can be proved to converge globally to the true Hessian matrix are given, in the case where the Symmetric Rank One update formula is used.
Abstract: Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used The rate of convergence is also examined and proven to be improving with the rate of convergence of the underlying iterates The theory is confirmed by some numerical experiments that also show the convergence of the Hessian approximations to be substantially slower for other known quasi-Newton formulae

219 citations

Proceedings ArticleDOI
28 Jun 2009
TL;DR: An adaptive line search scheme which allows to tune the step size adaptively and meanwhile guarantees the optimal convergence rate is proposed, which demonstrates the efficiency of the proposed Lassplore algorithm for large-scale problems.
Abstract: Logistic Regression is a well-known classification method that has been used widely in many applications of data mining, machine learning, computer vision, and bioinformatics. Sparse logistic regression embeds feature selection in the classification framework using the l1-norm regularization, and is attractive in many applications involving high-dimensional data. In this paper, we propose Lassplore for solving large-scale sparse logistic regression. Specifically, we formulate the problem as the l1-ball constrained smooth convex optimization, and propose to solve the problem using the Nesterov's method, an optimal first-order black-box method for smooth convex optimization. One of the critical issues in the use of the Nesterov's method is the estimation of the step size at each of the optimization iterations. Previous approaches either applies the constant step size which assumes that the Lipschitz gradient is known in advance, or requires a sequence of decreasing step size which leads to slow convergence in practice. In this paper, we propose an adaptive line search scheme which allows to tune the step size adaptively and meanwhile guarantees the optimal convergence rate. Empirical comparisons with several state-of-the-art algorithms demonstrate the efficiency of the proposed Lassplore algorithm for large-scale problems.

219 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a criterion to establish whether a finite element scheme is well suited to approximate the eigensolutions and, in the positive case, they estimate the rate of convergence of the eigenvalues.
Abstract: The purpose of this paper is to address some difficulties which arise in computing the eigenvalues of Maxwell's system by a finite element method. Depending on the method used, the spectrum may be polluted by spurious modes which are difficult to pick out among the approximations of the physically correct eigenvalues. Here we propose a criterion to establish whether or not a finite element scheme is well suited to approximate the eigensolutions and, in the positive case, we estimate the rate of convergence of the eigensolutions. This criterion involves some properties of the finite element space and of a suitable Fortin operator. The lowest-order edge elements, under some regularity assumptions, give an example of space satisfying the required conditions. The construction of such a Fortin operator in very general geometries and for any order edge elements is still an open problem. Moreover, we give some justification for the spectral pollution which occurs when nodal elements are used. Results of numerical experiments confirming the theory are also reported.

219 citations

Journal ArticleDOI
TL;DR: Computational experiments confirm robustness of the algorithm with respect to its internal parameters and demonstrate significant increase of the convergence rate for problems with high-contrast coefficients at a low overhead per iteration.

218 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
89% related
Markov chain
51.9K papers, 1.3M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
88% related
Differential equation
88K papers, 2M citations
88% related
Nonlinear system
208.1K papers, 4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023693
20221,530
20212,129
20202,036
20191,995