scispace - formally typeset
Search or ask a question

Showing papers on "Reaction rate published in 2017"


Journal ArticleDOI
TL;DR: The Ru@C2N electrocatalyst, made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure, exhibits high turnover frequencies and superior stability in both acidic and alkaline media, comparable to, or even better than, the Pt/C catalyst for the HER.
Abstract: Ruthenium nanoparticles homogeneously dispersed in a nitrogenated, two-dimensional carbon matrix show high turnover frequency and small overpotential for hydrogen evolution reaction both in acidic and alkaline media. The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications1,2,3. For an energy-efficient HER, a catalyst must be able to trigger proton reduction with minimal overpotential4 and have fast kinetics5,6,7,8,9. The most efficient catalysts in acidic media are platinum-based, as the strength of the Pt–H bond10 is associated with the fastest reaction rate for the HER11,12. The use of platinum, however, raises issues linked to cost and stability in non-acidic media. Recently, non-precious-metal-based catalysts have been reported, but these are susceptible to acid corrosion and are typically much inferior to Pt-based catalysts, exhibiting higher overpotentials and lower stability13,14,15. As a cheaper alternative to platinum, ruthenium possesses a similar bond strength with hydrogen (∼65 kcal mol–1)16, but has never been studied as a viable alternative for a HER catalyst. Here, we report a Ru-based catalyst for the HER that can operate both in acidic and alkaline media. Our catalyst is made of Ru nanoparticles dispersed within a nitrogenated holey two-dimensional carbon structure (Ru@C2N). The Ru@C2N electrocatalyst exhibits high turnover frequencies at 25 mV (0.67 H2 s−1 in 0.5 M H2SO4 solution; 0.75 H2 s−1 in 1.0 M KOH solution) and small overpotentials at 10 mA cm–2 (13.5 mV in 0.5 M H2SO4 solution; 17.0 mV in 1.0 M KOH solution) as well as superior stability in both acidic and alkaline media. These performances are comparable to, or even better than, the Pt/C catalyst for the HER.

1,105 citations


Journal ArticleDOI
TL;DR: This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions.
Abstract: The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions.

880 citations


Journal ArticleDOI
TL;DR: In this article, a series of transition metals (Co, Cu and Fe) were selected to decorate Ce-Ti mixed oxide to elevate the low-temperature activity of selective catalytic reduction of NO x by NH 3 (NH 3 -SCR) reaction.
Abstract: A series of transition metals (Co, Cu and Fe) were selected to decorate Ce-Ti mixed oxide to elevate the low-temperature activity of selective catalytic reduction of NO x by NH 3 (NH 3 -SCR) reaction, by adjusting the ratio of surface Ce 3+ species and oxygen vacancies. Among them, Co-Ce-Ti sample exhibited the excellent low-temperature activity and broadened temperature window, which could be attributed to the improvement of the physico-chemical properties and the acceleration of the reactions in the Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms. Owing to the different ionic sizes of Co 2+ and Ce 4+ , the lattice distortion of Ce-Ti mixed oxide was greatly aggravated and subsequently increased the ratio of Ce 3+ and the surface adsorbed oxygen, which benefited the generation of adsorbed NO x species and improved the reaction in the L-H mechanism. Meanwhile, the coordinatively unsaturated cationic sites over the Co-Ce-Ti sample induced more Lewis acid sites and enhanced the formation of the adsorbed NH 3 species bounded with Lewis acid sites, which were considered as the crucial intermediates in E-R mechanism, and therefore facilitating the reaction between the adsorbed NH 3 species and NO molecules. The enhancements in both the reactions from L-H and E-R mechanisms appeared to directly correlated with the improved deNO x performance on the Co-Ce-Ti sample, and the L-H mechanism could be the dominate one at low temperatures due to its rapid reaction rate.

337 citations


Journal ArticleDOI
TL;DR: The degree of rate control (DRC) is a mathematical approach for analyzing multistep reaction mechanisms that has proven very useful in catalysis research as discussed by the authors, which identifies the rate-controlling transition states and intermediates (i.e., those whose DRCs are large in magnitude).
Abstract: The “degree of rate control” (DRC) is a mathematical approach for analyzing multistep reaction mechanisms that has proven very useful in catalysis research. It identifies the “rate-controlling transition states and intermediates” (i.e., those whose DRCs are large in magnitude). Even in mechanisms with over 30 intermediates and transition states, these are generally just a few distinct chemical species whose energies, if they could be independently changed, would achieve a faster net reaction rate to the product of interest. For example, when there is a single “rate-determining step”, the DRC for its transition state (TS) is 1, which means (by definition) that if this TS’s energy could be decreased by kBT (where kB is Boltzmann’s constant and T is temperature), the net rate would increase by a factor of e. Because the (relative) energies of these key adsorbed intermediates and transition states can be adjusted by modifying the catalyst or solvent, or even a reactant’s molecular structure, the DRC values pr...

266 citations


Journal ArticleDOI
TL;DR: In this article, a stable and inexpensive g-C 3 N 4 as the chelating agent and combined with the graphitized mesoporous carbon (GMC) composite was characterized by several techniques including FTIR, XRD, XPS, TEM and STXM.
Abstract: Heterogeneous Fe-N complexes are a kind of promising catalysts for the Fenton-like reaction. The present study selected a stable and inexpensive g-C 3 N 4 as the chelating agent and combined with the graphitized mesoporous carbon (GMC). The fabricated Fe-g-C 3 N 4 /GMC composite was characterized by several techniques including FTIR, XRD, XPS, TEM and STXM. Results showed clear sheets of g-C 3 N 4 and graphite with Fe evenly distributed mostly in the Fe-N coordination form. The catalyst expressed high activity in the Fenton-like reaction in a wide pH range of 4–10. 99.2% removal of Acid Red 73 was obtained in 40 min, and the degradation data well fitted with the pseudo-first-order kinetics model. By correlating the constant of reaction rates calculated from the model and the Fe speciation contents of the samples prepared at different conditions, we deduced that Fe-N species are the most important active sites for the Fenton-like reaction. More importantly, hydroxyl radicals played a great role in the whole reaction yet their generation was independent of visible light. Cyclic voltammetry results confirmed that the GMC can accelerate the Fe(III)/Fe(II) redox cycle by enhancing electron transfer, and thus enable this Fenton-like catalyst to perform well in a wide pH range.

241 citations


Journal ArticleDOI
TL;DR: This work determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models to resolve several long-standing puzzles about the atomistic OER mechanism.
Abstract: How to efficiently oxidize H2O to O2 (oxygen evolution reaction, OER) in photoelectrochemical cells (PEC) is a great challenge due to its complex charge transfer process, high overpotential, and corrosion. So far no OER mechanism has been fully explained atomistically with both thermodynamic and kinetics. IrO2 is the only known OER catalyst with both high catalytic activity and stability in acidic conditions. This is important because PEC experiments often operate at extreme pH conditions. In this work, we performed first-principles calculations integrated with implicit solvation at constant potentials to examine the detailed atomistic reaction mechanism of OER at the IrO2 (110) surface. We determined the surface phase diagram, explored the possible reaction pathways including kinetic barriers, and computed reaction rates based on the microkinetic models. This allowed us to resolve several long-standing puzzles about the atomistic OER mechanism.

213 citations


Journal ArticleDOI
TL;DR: In this article, the mixed convective flow of magneto-nanofluid bounded by a vertical stretchable surface considering Brownian motion and thermophoretic diffusion effects is analyzed.

169 citations


Journal ArticleDOI
TL;DR: A multiscale (DFT/microkinetic) modeling approach and experiments are used to investigate the reactivity of the Ni/Al2O3 interface toward water-gas shift (WGS) and dry reforming of methane (DRM), two key industrial reactions with common elementary steps and intermediates, but held at significantly different temperatures.
Abstract: Transition metal nanoparticles (NPs) are typically supported on oxides to ensure their stability, which may result in modification of the original NP catalyst reactivity. In a number of cases, this is related to the formation of NP/support interface sites that play a role in catalysis. The metal/support interface effect verified experimentally is commonly ascribed to stronger reactants adsorption or their facile activation on such sites compared to bare NPs, as indicated by DFT-derived potential energy surfaces (PESs). However, the relevance of specific reaction elementary steps to the overall reaction rate depends on the preferred reaction pathways at reaction conditions, which usually cannot be inferred based solely on PES. Hereby, we use a multiscale (DFT/microkinetic) modeling approach and experiments to investigate the reactivity of the Ni/Al2O3 interface toward water–gas shift (WGS) and dry reforming of methane (DRM), two key industrial reactions with common elementary steps and intermediates, but h...

162 citations


Journal ArticleDOI
TL;DR: The triphase system appears an enabling platform for understanding and maximizing photocatalyst kinetics, aiding in the application of semiconductor photocatalysis.
Abstract: Semiconductor photocatalysis has long been considered as a promising approach for water pollution remediation. However, limited by the recombination of electrons and holes, low kinetics of photocatalysts and slow reaction rate impede large-scale applications. Herein, we addressed this limitation by developing a triphase photocatalytic system in which a photocatalytic reaction is carried out at air-liquid-solid joint interfaces. Such a triphase system allows the rapid delivery of oxygen, a natural electron scavenger, from air to the reaction interface. This enables the efficient removal of photogenerated electrons from the photocatalyst surface and minimization of electron-hole recombination even at high light intensities, thereby resulting in an approximate 10-fold enhancement in the photocatalytic reaction rate as compared to a conventional liquid/solid diphase system. The triphase system appears an enabling platform for understanding and maximizing photocatalyst kinetics, aiding in the application of semiconductor photocatalysis.

158 citations


Journal ArticleDOI
TL;DR: In this paper, the photoreduction of carbon dioxide (CO2) into hydrocarbon fuels was studied in a homemade photocatalytic system over 5.wt.% graphene oxide-doped oxygen-rich TiO2 (5GO-OTiO2) photocatalyst.

128 citations


Journal ArticleDOI
TL;DR: A series of ZrO2 catalysts supported on mesoporous SBA-15 silica were synthesized and examined as catalysts in the production of γ-valerolactone (GVL) from biomass-derived levulinic acid and its esters via a catalytic transfer hydrogenation (CTH) using several alcohols as hydrogen donors as mentioned in this paper.

Journal ArticleDOI
TL;DR: In this article, the morphology of nanostructured electrodes enhances long-range CO2 transport via their influence on gas-evolution, leading to a 4-fold increase in the limiting current density compared to a nanoparticle-based catalyst alone.
Abstract: Nanostructured CO2 reduction catalysts now achieve near-unity reaction selectivity at increasingly improved Tafel slopes and low overpotentials. With excellent surface reaction kinetics, these catalysts encounter CO2 mass transport limitations at current densities ca. 20 mA cm–2. We show here that – in addition to influencing reaction rates and local reactant concentration – the morphology of nanostructured electrodes enhances long-range CO2 transport via their influence on gas-evolution. Sharper needle morphologies can nucleate and release bubbles as small as 20 μm, leading to a 4-fold increase in the limiting current density compared to a nanoparticle-based catalyst alone. By extending this observation into a diffusion model that accounts for bubble-induced mass transport near the electrode’s surface, diffusive transport can be directly linked to current densities and operating conditions, identifying efficient routes to >100 mA cm–2 production. We further extend this model to study the influence of mas...

Journal ArticleDOI
TL;DR: In this paper, the authors examined the electrochemical-driven reduction of CO2 to methanol at Cu2O/ZnO gas diffusion electrodes in soluble pyridine-based electrolytes at different concentrations.
Abstract: In this study, we examine the electrochemical-driven reduction of CO2 to methanol at Cu2O/ZnO gas diffusion electrodes in soluble pyridine-based electrolytes at different concentrations. The process is evaluated first by cyclic voltammetric analyses and then, for the continuous reduction of CO2 in a filter-press electrochemical cell. The results showed that the use of pyridine-based soluble co-catalysts lowered the overpotential for the electrochemical reduction of CO2, enhancing also reaction performance (i.e. reaction rate and Faradaic efficiency). Reaction outcome is discussed on the basis of the role that N-ligands play on the mechanism and the inductive effect caused by the electron-releasing or electron-withdrawing substituents of the aromatic ring. In particular, the maximum methanol formation rate and Faradaic efficiency reached at the 2-methylpyridine (with electron-releasing substituents)-based system with a pH of 7.6 and an applied current density of j = 1 mA cm−2 were r = 2.91 μmol m−2 s−1 and FE = 16.86%, respectively. These values significantly enhance those obtained in the absence of any molecular catalyst (r = 0.21 μmol m−2 s−1 and FE = 1.2%). The performance was further enhanced when lowering the electrolyte pH by adding HCl (r = 4.42 μmol m−2 s−1 and FE = 25.6% at pH = 5), although the system showed deactivation in the long run (5 h) which appears largely to be due to a change in product selectivity of the reaction (i.e. formation of ethylene).

Journal ArticleDOI
TL;DR: Kinetic studies of the reaction in combination with DFT calculations reveal a metallo‐radical‐type mechanism involving rate‐limiting azide activation to form the key cobalt(III)‐nitrene radical intermediate that enables direct synthesis of various N‐heterocycles from aliphatic azides.
Abstract: Cobalt-porphyrin-catalysed intramolecular ring-closing C−H bond amination enables direct synthesis of various N-heterocycles from aliphatic azides. Pyrrolidines, oxazolidines, imidazolidines, isoindolines and tetrahydroisoquinoline can be obtained in good to excellent yields in a single reaction step with an air- and moisture-stable catalyst. Kinetic studies of the reaction in combination with DFT calculations reveal a metallo-radical-type mechanism involving rate-limiting azide activation to form the key cobalt(III)-nitrene radical intermediate. A subsequent low barrier intramolecular hydrogen-atom transfer from a benzylic C−H bond to the nitrene-radical intermediate followed by a radical rebound step leads to formation of the desired N-heterocyclic ring products. Kinetic isotope competition experiments are in agreement with a radical-type C−H bond-activation step (intramolecular KIE=7), which occurs after the rate-limiting azide activation step. The use of di-tert-butyldicarbonate (Boc2O) significantly enhances the reaction rate by preventing competitive binding of the formed amine product. Under these conditions, the reaction shows clean first-order kinetics in both the [catalyst] and the [azide substrate], and is zero-order in [Boc2O]. Modest enantioselectivities (29–46 % ee in the temperature range of 100–80 °C) could be achieved in the ring closure of (4-azidobutyl)benzene using a new chiral cobalt-porphyrin catalyst equipped with four (1S)-(−)-camphanic-ester groups.

Journal ArticleDOI
TL;DR: The effect of the alkali activation reaction on the characteristics of slag-based foams made by the mechanical foaming technique is investigated in this paper, where a change in the reaction is shown to affect the pore size distribution, pore homogeneity, density and properties of the inorganic foams.

Journal ArticleDOI
TL;DR: In this article, a 3D computational fluid dynamics (CFD) simulation of endothermic steam methane reforming in a random packed bed of 807 spherical catalyst particles at a tube-to-particle diameter ratio of N = 5.96 with constant wall heat flux is presented.

Journal ArticleDOI
TL;DR: The kinetics of photoelectrochemical oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements and it is determined that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential.
Abstract: The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC m...

Journal ArticleDOI
TL;DR: Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution.
Abstract: The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm–2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec–1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH– via a 4e process at a current density comparable to that of Pt/C. The unusual catal...

Journal ArticleDOI
TL;DR: Experimental results suggest that plasma-generated vibrationally-excited CH4 favorably interacts with Ni sites at elevated temperatures, which helps reduce the energy barrier required to activate CH4 and enhance CH4 reforming rates.
Abstract: The elucidation of catalyst surface–plasma interactions is a challenging endeavor and therefore requires thorough and rigorous assessment of the reaction dynamics on the catalyst in the plasma environment. The first step in quantifying and defining catalyst–plasma interactions is a detailed kinetic study that can be used to verify appropriate reaction conditions for comparison and to discover any unexpected behavior of plasma-assisted reactions that might prevent direct comparison. In this paper, we provide a kinetic evaluation of CH4 activation in a dielectric barrier discharge plasma in order to quantify plasma–catalyst interactions via kinetic parameters. The dry reforming of CH4 with CO2 was studied as a model reaction using Ni supported on γ-Al2O3 at temperatures of 790–890 K under atmospheric pressure, where the partial pressures of CH4 (or CO2) were varied over a range of ≤25.3 kPa. Reaction performance was monitored by varying gas hourly space velocity, plasma power, bulk gas temperature, and reactant concentration. After correcting for gas-phase plasma reactions, a linear relationship was observed in the log of the measured rate constant with respect to reciprocal power (1/power). Although thermal catalysis displays typical Arrhenius behavior for this reaction, plasma-assisted catalysis occurs from a complex mixture of sources and shows non-Arrhenius behavior. However, an energy barrier was obtained from the relationship between the reaction rate constant and input power to exhibit ≤∼20 kJ mol−1 (compared to ∼70 kJ mol−1 for thermal catalysis). Of additional importance, the energy barriers measured during plasma-assisted catalysis were relatively consistent with respect to variations in total flow rates, types of diluent, or bulk reaction temperature. These experimental results suggest that plasma-generated vibrationally-excited CH4 favorably interacts with Ni sites at elevated temperatures, which helps reduce the energy barrier required to activate CH4 and enhance CH4 reforming rates.

Journal ArticleDOI
TL;DR: This is the first comprehensive study on chlorine-derived radical reactions, and it provides mechanistic insight into the reaction mechanisms for the development of an elementary reaction-based kinetic model.
Abstract: The combined ultraviolet (UV) and free chlorine (UV–chlorine) advanced oxidation process that produces highly reactive hydroxyl radicals (HO•) and chlorine radicals (Cl•) is an attractive alternative to UV alone or chlorination for disinfection because of the destruction of a wide variety of organic compounds However, concerns about the potential formation of chlorinated transformation products require an understanding of the radical-induced elementary reaction mechanisms and their reaction-rate constants While many studies have revealed the reactivity of oxygenated radicals, the reaction mechanisms of chlorine-derived radicals have not been elucidated due to the data scarcity and discrepancies among experimental observations We found a linear free-energy relationship quantum mechanically calculated free energies of reaction and the literature-reported experimentally measured reaction rate constants, kexp, for 22 chlorine-derived inorganic radical reactions in the UV–chlorine process This relationship

Journal ArticleDOI
TL;DR: In this article, a comprehensive 2D symmetric model for a CO2-piperazine (PZ)-membrane absorption process was proposed, which showed high CO2 capture performance due to high chemical reaction rate constant.
Abstract: CO2 is a main greenhouse gas emission causing global warming and other environmental issues, which is mainly emitted from the fossil fuels combustion or utilization. Membrane absorption is a novel CO2 capture method that combines the advantages of chemical absorption and membrane separation. In this paper, a comprehensive 2D symmetric model for a CO2-piperazine (PZ)-membrane absorption process was proposed. PZ solutions showed high CO2 capture performance due to high chemical reaction rate constant. Decreasing the gas flowrate and increasing the absorbent flowrate promoted the CO2 absorption efficiency. On the other hand, varying the membrane contactor properties could also affect the capture of CO2. 0.28 m/s gas velocity, 0.08 m/s absorbent velocity, 20% CO2 in gas mixture, and 0.94 mol/L PZ were recommended as the optimum conditions after the parametric study. This numerical model is reliable for potential use in CO2-absorbent-membrane absorption systems.

Journal ArticleDOI
07 Dec 2017
TL;DR: In this article, a combination of newly acquired laboratory data and global atmospheric chemistry and transport modelling is used to find that the reaction of Criegee intermediates with alcohols is occurring in Earth's atmosphere and may represent a sizeable source of functionalized hydroperoxides therein.
Abstract: Ozonolysis, the mechanism by which alkenes are oxidized by ozone in the atmosphere, produces a diverse family of oxidants known as Criegee intermediates (CIs). Using a combination of newly acquired laboratory data and global atmospheric chemistry and transport modelling, we find that the reaction of CIs with alcohols – a reaction that was originally employed to trap these reactive species and provide evidence for the ozonolysis mechanism nearly 70 years ago – is occurring in Earth’s atmosphere and may represent a sizeable source of functionalized hydroperoxides therein. Rate coefficients are reported for the reactions of CH2OO and (CH3)2COO + methanol and that of CH2OO + ethanol. Substitution about the Criegee intermediate is found to have a strong influence over the reaction rate, whereas substitution on the alcohol moiety does not. Although these reactions are not especially rapid, both the precursors to CIs and alcohols have large emissions from the terrestrial biosphere, leading to a high degree of co...


Journal ArticleDOI
TL;DR: In this paper, a novel complex oxidant, NaClO 2 /Na 2 S 2 O 8, was prepared for simultaneous removal of SO 2 and NO through a pre-oxidation method.

Journal ArticleDOI
TL;DR: The evaluation of enzymatic kinetics and starch degradation kinetics indicated a promotion of the reaction rate and enzyme-substrate affinity and thermodynamic results revealed that sonoenzymolysis reaction generated greater impacts on starch properties.

Journal ArticleDOI
TL;DR: An operationally simple method is proposed for the general improvement of potentially problematic systems across a broad range of reaction types, in particular for reactions run at scale.

Journal ArticleDOI
TL;DR: In this article, a catalyst screening comprising zeolites and ion exchange resins for the synthesis of oligomeric oxymethylene dimethyl ethers (OME) from methanol (MeOH) and formaldehyde (FA) has been carried out.

Journal ArticleDOI
TL;DR: It is reported that a mechanochemical reaction in a ball mill exhibits unusual sigmoidal feedback kinetics that differ dramatically from the simple first-order kinetics for the same reaction in solution.
Abstract: Although mechanochemical synthesis is becoming more widely applied and even commercialised, greater basic understanding is needed if the field is to progress on less of a trial-and-error basis. We report that a mechanochemical reaction in a ball mill exhibits unusual sigmoidal feedback kinetics that differ dramatically from the simple first-order kinetics for the same reaction in solution. An induction period is followed by a rapid increase in reaction rate before the rate decreases again as the reaction goes to completion. The origin of these unusual kinetics is found to be a feedback cycle involving both chemical and mechanical factors. During the reaction the physical form of the reaction mixture changes from a powder to a cohesive rubber-like state, and this results in the observed reaction rate increase. The study reveals that non-obvious and dynamic rheological changes in the reaction mixture must be appreciated to understand how mechanochemical reactions progress.

Journal ArticleDOI
TL;DR: In this paper, the reversible reaction of calcium hydroxide (Ca(OH) 2 ) to calcium oxide (CaO) and water vapor is well known in the context of thermochemical energy storage.

Journal ArticleDOI
TL;DR: In this paper, a series of Co3O4 catalysts were prepared by a facile precipitation method just changing the aging time and tested for methane combustion, and it was found that the activity for the reaction increased firstly and then decreased with increasing aging time in the form of a volcano curve.